- IPO
假设 力扣(LeetCode)即将开始 IPO 。为了以更高的价格将股票卖给风险投资公司,力扣 希望在 IPO 之前开展一些项目以增加其资本。 由于资源有限,它只能在 IPO 之前完成最多 k 个不同的项目。帮助 力扣 设计完成最多 k 个不同项目后得到最大总资本的方式。
给你 n 个项目。对于每个项目 i ,它都有一个纯利润 profits[i] ,和启动该项目需要的最小资本 capital[i] 。
最初,你的资本为 w 。当你完成一个项目时,你将获得纯利润,且利润将被添加到你的总资本中。
总而言之,从给定项目中选择 最多 k 个不同项目的列表,以 最大化最终资本 ,并输出最终可获得的最多资本。
答案保证在 32 位有符号整数范围内。
示例 1:
输入:k = 2, w = 0, profits = [1,2,3], capital = [0,1,1]
输出:4
解释:
由于你的初始资本为 0,你仅可以从 0 号项目开始。
在完成后,你将获得 1 的利润,你的总资本将变为 1。
此时你可以选择开始 1 号或 2 号项目。
由于你最多可以选择两个项目,所以你需要完成 2 号项目以获得最大的资本。
因此,输出最后最大化的资本,为 0 + 1 + 3 = 4。
示例 2:
输入:k = 3, w = 0, profits = [1,2,3], capital = [0,1,2]
输出:6
提示:
1 <= k <= 105
0 <= w <= 109
n == profits.length
n == capital.length
1 <= n <= 105
0 <= profits[i] <= 104
0 <= capital[i] <= 109
题解
我不太理解为啥是困难模式的题目,一开始还以为是我误解了题意。
直接看代码吧。
AC代码
class Solution {
public:
struct Node
{
int cap,pro;
bool operator<(const Node& b) const
{
return pro<b.pro;
}
};
priority_queue<Node>q;
vector<Node>data;
static int cmp(Node a1,Node a2)
{
return a1.cap<a2.cap;
}
int findMaximizedCapital(int k, int w, vector<int>& profits, vector<int>& capital)
{
for(int i=0;i<profits.size();i++)
{
Node t;
t.pro=profits[i];
t.cap=capital[i];
data.push_back(t);
}
sort(data.begin(),data.end(),cmp);
int s=0;
for(int i=0;i<k;i++)
{
while(s<data.size())
{
if(data[s].cap<=w)
{
q.push(data[s]);
}
else break;
s++;
}
if(q.empty())break;
w += q.top().pro;
q.pop();
}
return w;
}
};