(脑肿瘤分割笔记:三十五)基于特征分离和门控融合的鲁棒多模态脑肿瘤分割

目录

Title:Robust Multimodal Brain Tumor Segmentation via Feature Disentanglement and Gated Fusion

Abstract--摘要

Introduction

方法

方法概述

用于多模态学习的特征分离

具有学习门控的多模态融合

总结


Title:Robust Multimodal Brain Tumor Segmentation via Feature Disentanglement and Gated Fusion

Abstract--摘要

准确的医学图像分割通常需要在多模态数据中有效的学习到补充信息。但是在临床中经常会遇到影像学检查缺失的问题(也是本文考虑要解决的问题)。

网络使用特征分离将输入模态数据分解为特定于模态的外观编码和模态不变的内容编码。前者唯一的附着于每个模态,后者为分割任务吸收吸收多个模态的信息。利用增强的模态不变性,将来自每个模态的分离出来的内容代码融合到其共享表示中,从而获得对丢失数据的鲁棒性。融合是通过一种基于学习的策略来实现的,这个策略用于在不同的位置对不同的模态进行评估。

Introduction

已经开发了大量的自动脑肿瘤分割的多模态方法,通过连接多个MRI模态作为输入,或在潜在空间中融合来自每个模态的高级特征,但是现在的方法并不总能保证全套所需的模式。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值