目录
Title:Robust Multimodal Brain Tumor Segmentation via Feature Disentanglement and Gated Fusion
Title:Robust Multimodal Brain Tumor Segmentation via Feature Disentanglement and Gated Fusion
Abstract--摘要
准确的医学图像分割通常需要在多模态数据中有效的学习到补充信息。但是在临床中经常会遇到影像学检查缺失的问题(也是本文考虑要解决的问题)。
网络使用特征分离将输入模态数据分解为特定于模态的外观编码和模态不变的内容编码。前者唯一的附着于每个模态,后者为分割任务吸收吸收多个模态的信息。利用增强的模态不变性,将来自每个模态的分离出来的内容代码融合到其共享表示中,从而获得对丢失数据的鲁棒性。融合是通过一种基于学习的策略来实现的,这个策略用于在不同的位置对不同的模态进行评估。
Introduction
已经开发了大量的自动脑肿瘤分割的多模态方法,通过连接多个MRI模态作为输入,或在潜在空间中融合来自每个模态的高级特征,但是现在的方法并不总能保证全套所需的模式。
最低0.47元/天 解锁文章
1523

被折叠的 条评论
为什么被折叠?



