深度可分离卷积&&组卷积

目录

一:深度可分离卷积

深度可分离卷积完整示意图

普通卷积和深度可分离卷积计算量的对比

二:Group CONV(组卷积)


一:深度可分离卷积

深度可分离卷积被提出于MobileNet中,其主要作用用于减少模型参数和运算量。

深度可分离卷积主要由两部分构成:DW卷积和PW卷积

网络中的亮点在于(1)DW卷积(大大的减少了运算量和参数数量)

(2)增加了参数α和β

传统卷积和DW卷积的对比图如下所示:

在DW卷积中每个卷积核的深度都是为1的,每个卷积核只负责与输入特征矩阵的一个channel进行卷积运算,然后再得到相应的输出矩阵的一个channel

深度可分离卷积完整示意图

图中的PW卷积其实和普通的卷积区别不大,只是将卷积核大小变为1

普通卷积和深

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值