机器学习
文章平均质量分 58
nickdlk
就那样吧
展开
-
监督+无监督、机器学习+深度学习 寻找普通苹果与其他苹果
根据original_data 样本,建立模型,对test_data的图片进行普通/其他苹果判断1. 数据增强,扩充确认为普通苹果的样本数量+ 特征提取,使用VGG16模型提取图像特征+ 图像批量处理+ Kmeans模型尝试普通/其他苹果聚类+ 基于标签数据矫正结果,并可视化+ Meanshift模型提升模型表现+ 数据降维PCA处理,提升模型表现原创 2020-07-26 23:52:58 · 1162 阅读 · 7 评论 -
keras 迁移学习 二次函数拟合
迁移学习 transfer learning以已经训练好的模型A为起点,在新场景中,根据新数据建立模型B。目的:将某个领域或任务上学习到的知识或模式,应用到不同但相关的领域或问题中。 模型A存储了模型结构,权重系数;模型B基于新数据,实现了对模型A的部分结构或权重系数的更新。原创 2020-07-26 23:29:12 · 1016 阅读 · 1 评论 -
LSTM实现文本生成
LSTM实现文本生成#加载数据data = open("LSTM_text.txt").read()#移除换行data = data.replace("\n","").replace("\r","")print(data)原创 2020-07-26 23:20:33 · 1344 阅读 · 0 评论 -
RNN模型 LSTM 股票时间序列预测
载入数据import pandas as pdimport numpy as npdata = pd.read_csv("zgpa_train.csv")data.head()price = data.loc[:,'close']price.head()#归一化处理price_norm = price/max(price)print(price_norm)#绘制曲线%matplotlib inlinefrom matplotlib import pyplot as pltfi原创 2020-07-25 23:58:50 · 2893 阅读 · 6 评论 -
VGG16模型 MLP 猫狗图像分类
单张图片预测#加载数单张数据from keras.preprocessing.image import load_img,img_to_arraypic_dog_path = "E:\\PycharmProjects\\Learning\\dataset\\dog_test.jpg"pic_dog = load_img(pic_dog_path,target_size=(224,224))#VGG所要的大小pic_dog = img_to_array(pic_dog)#加载模型from ke原创 2020-07-24 23:57:23 · 1544 阅读 · 1 评论 -
CNN 猫狗图像分类
加载数据from keras.preprocessing.image import ImageDataGeneratortrain_datagen = ImageDataGenerator(rescale=1./255)training_set = train_datagen.flow_from_directory("E:\\PycharmProjects\\Learning\\dataset\\train",target_size=(50,50),batch_size=32,class_mode="原创 2020-07-24 23:48:16 · 1996 阅读 · 0 评论 -
MLP mnist 手写数字识别
#载入数据from keras.datasets import mnist(X_train,y_train),(X_test,y_test)=mnist.load_data()#X_train是图像数据,y_train是标签#数据量有点大 载入需要时间print(type(X_train),X_train.shape)#可视化数据img1 = X_train[0]%matplotlib inlinefrom matplotlib import pyplot as pltfig1 = p原创 2020-07-24 23:23:52 · 1064 阅读 · 0 评论 -
MLP实现非线性二分类 keras简单应用
import pandas as pdimport numpy as npdata = pd.read_csv("MLP_test_data.csv")data.head()数据自己用excel生成的…再处理一下输出:print(type(data),type(data.loc[:,'x']))data_x = []data_y = []data_lable = []for index, row in data.iterrows(): # print(type(row),r原创 2020-07-23 23:52:06 · 2519 阅读 · 3 评论 -
数据分离与混淆矩阵 好坏质检分类
好坏质检分类实战task:基于data_class_raw.csv数据,根据高斯分布概率密度函数,寻找异常点并剔除基于data_class_processed.csv数据,进行PCA处理,确定重要数据维度及成分完成数据分离,数据分离参数:random_state=4,test_size=0.4建立KNN模型完成分类,n_neighbors取10,计算分类准确率,可视化分类边界计算测试数据集对应的混淆矩阵,计算准确率、召回率、特异度、精确率、F1分数尝试不同的n_neighbors(1-20原创 2020-07-23 23:45:23 · 465 阅读 · 3 评论 -
决策树实现iris数据分类
#加载数据import pandas as pdimport numpy as npdata = pd.read_csv('iris_data.csv')data.head()#定义X,yX = data.drop(['target','label'],axis=1)y = data.loc[:,'label']print(X.shape,y.shape)#打印X,y的维度(150, 4) (150,)#建立决策树模型from sklearn import treedc_t原创 2020-07-23 23:45:02 · 3430 阅读 · 2 评论 -
PCA iris数据降维后分类
基于iris数据 建立KNN模型实现数据分类对数据进行标准环处理,选择一个维度可视化处理后效果进行与元数据等维度PCA,查看各主成分的方差比例保留合适的主成分,可视化降维后的数据基于降维后数据建立KNN模型,与元数据表现进行对比import pandas as pdimport numpy as npdata = pd.read_csv('iris_data.csv')print(data.head())X = data.drop(['target','label'],axis=1.原创 2020-07-23 23:41:56 · 3783 阅读 · 0 评论 -
分布问题 异常检测
#加载数据import pandas as pdimport numpy as npdata = pd.read_csv('anomaly_data.csv')data.head()#数据可视化%matplotlib inlinefrom matplotlib import pyplot as pltfig1 = plt.figure(figsize=(10,7))plt.scatter(data.loc[:,'x1'],data.loc[:,'x2'])plt.title("dat原创 2020-07-23 23:38:46 · 637 阅读 · 3 评论 -
过拟合 欠拟合 多项式回归模型 酶活性预测实战task
酶活性预测实战task:基于T-R-train.csv数据,建立线性回归模型,计算其在T-R-test.csv数据上的r2分数,可视化模型预测结果加入多项式特征(2次、5次),建立回归模型计算多项式回归模型对测试数据进行预测的r2分数,判断哪个模型预测更准确可视化多项式回归模型数据预测结果,判断哪个模型预测更准确import pandas as pdimport numpy as npdata_train = pd.read_csv('T-R-train.csv')data_train原创 2020-07-23 23:22:32 · 940 阅读 · 1 评论 -
聚类分析 Kmeans算法 KNN模型 Meanshift算法
Kmeans 算法#加载数据并预览import pandas as pdimport numpy as npdata = pd.read_csv('data.csv')data.head()#定义X和yX = data.drop(['labels'],axis=1)y = data.loc[:,'labels']y.head()#预览#查看类别pd.value_counts(y) #画图 无标签的%matplotlib inlinefrom matplotlib impo原创 2020-07-23 23:16:35 · 753 阅读 · 3 评论 -
逻辑回归 分类任务 芯片质量通过检测
#加载数据import pandas as pdimport numpy as npdata = pd.read_csv('chip_test.csv')data.head() #数据预览#可视化数据%matplotlib inline from matplotlib import pyplot as pltfig1 = plt.figure()passed = plt.scatter(data.loc[:,'test1'][mask],data.loc[:,'test2'][mas原创 2020-07-23 23:08:02 · 968 阅读 · 5 评论