泰勒级数与麦克劳伦级数

泰勒级数是利用多项式逼近复杂函数的数学工具,其重要性在于能够通过已知函数在某点的导数信息来估算函数在附近的变化。泰勒公式和麦克劳伦公式的关系在于,后者是前者在展开点为0时的特例。文章探讨了泰勒级数的几何意义和使用多项式近似的合理性。
摘要由CSDN通过智能技术生成

本文仅仅是自己的一些个人见解,如果有什么错误或者不严谨的地方,欢迎大家温柔地指正 : )

泰勒级数的意义

在开始讨论泰勒级数与麦克劳伦级数之前,我想先思考一下,为什么泰勒级数展开如此重要。
其实从上初中的时候开始我就有一个疑问,像类似于对变量进行加减乘除平方这样的操作组成的代数式我们都可以通过自己的手算甚至是心算就可以得出结论,即使这个式子有时候看起来十分的复杂。但是一旦涉及到了求正弦函数,对数函数,指数函数这种不明所以,不知道从哪算起的计算符号,我们就会无从下手。我们知道的也仅仅是这些函数在某些特定点的值,比如 s i n / c o s ( 0 ) , s i n / c o s ( 45 ° ) , l n / l o g ( 1 ) , l n ( e ) sin/cos(0),sin/cos(45\degree),ln/log(1),ln(e) sin/cos(0),sin/cos(45°),ln/log(1),ln(e),这些值也不是我们自己通过计算得到的,多是我们先从老师那知道了这些数值,然后理解了这些函数的定义,并告诉自己这些值就该是这样的。
但是当我们在做题中,碰到了一些奇奇怪怪的输入值,比如 s i n ( 55 ° ) sin(55\degree) sin(55°),我们就只能依赖我们的好朋友-计算器了。计算器怎么这么厉害,或者说设计计算器的人是怎么设计它让它能够计算出来这些函数的值,诸如此类的困惑直到我大学学到了泰勒级数展开,明白了计算机计算正弦函数也是要通过对它进行泰勒展开,通过多项式的叠加来逼近真实值得到的,才得以解开。

泰勒公式

再广泛点来说,当我们在处理一个工程问题时,我们想要得到一个函数在某一点周围的变化值,但是这个函数十分复杂,甚至不可描述:),我们就可以通过在该点做泰勒级数展开,逼近该点周围函数的变化。当然了,泰勒级数也不是那么随便的,让我们说展开就展开。想要通过泰勒级数展开使用多项式逼近函数的真实值,我们也需要提供一些有用的参考信息,也就是函数在展开点处的导数,导数的导数,导数的导数的导数。。。(泰勒公式:我不管你是用求导数的方法计算得到,还是用零阶采样的方法得到,反正你要给我这些导数,这样本大能才能了解这个函数的变化的变化的变化的变化,然后用多项式辅助你去做你想要的函数的近似。)
有了这些想法后,我们再来看一看维基百科对泰勒公式的定义
“ 在数学中,泰勒公式(英语:Taylor’s Formula)是一个用函数在某点的信息描述其附近取值的公式。这个公式来自于微积分的泰勒定理(Taylor’s theorem),泰勒定理描述了一个可微函数,如果函数足够光滑的话,在已知函数在某一点的各阶导数值的情况之下,泰勒公式可以用这些导数值做系数构建一个多项式来近似函数在这一点的邻域中的值,这个多项式称为泰勒多项式(Taylor polynomial)。泰勒公式还给出了余项即这个多项式和实际的函数值之间的偏差。 ”
以及,设 n 是一个正整数。如果定义在一个包含 a 的区间上的函数 f 在 a 点处 n+1 次可导,那么对于这个区间上的任意 x,都有:
在这里插入图片描述
其中的多项式称为函数在a 处的泰勒展开式,剩余的 R n ( x ) R_n(x) Rn(x) 是泰勒公式的余项,是 ( x − a ) n (x-a)^n (xa)n 的高阶无穷小。
上述公式也可以写作,
f ( x ) = ∑ n = 0 N f ( n ) ( a ) n ! ( x − a ) n + R n ( x ) f(x)=\sum^N_{n=0}\frac{f^{(n)}(a)}{n!}(x-a)^n+R_n(x) f(x)=n=0N

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值