偏导数,雅可比矩阵(jacobi matrix),黑塞矩阵(Hessian matrix)

这里我们大致地复习一下偏导数,雅克比矩阵以及黑塞矩阵的定义和关系。导数向量与雅克比矩阵(Jacobi matrix)函数的某个因变量对某个自变量求的导数即为它们关于函数的偏导数。当因变量为一元的情况下,各个自变量的偏导数组成了导数向量.当函数因变量为多元的情况下,函数的导数可由jacobi matrix来描述。E.g., 现有一函数可将m维的自变量映射到n维的因变量上,也就是说该函数由n个子函...
摘要由CSDN通过智能技术生成

这里我们大致地复习一下偏导数,雅克比矩阵以及黑塞矩阵的定义和关系。

导数向量与雅克比矩阵(Jacobi matrix)

函数的某个因变量对某个自变量求的导数即为它们关于函数的偏导数。当因变量为一元的情况下,各个自变量的偏导数组成了导数向量.当函数因变量为多元的情况下,函数的导数可由jacobi matrix来描述。E.g., 现有一函数可将m维的自变量映射到n维的因变量上,也就是说该函数由n个子函数构成 y 1 ( x 1 , . . . , x m ) , . . . , y n ( x 1 , . . . , x m ) y_1(x_1,...,x_m),...,y_n(x_1,...,x_m) y1(x1,...,xm),...,yn(x1,...,xm).而jacobi matrix则由这些自变量和因变量之间的偏导数组成,构成一个n行m列的矩阵:
[ ∂ y 1 ∂ x 1 ⋯ ∂ y 1 ∂ x m ⋮ ⋱ ⋮ ∂ y n ∂ x 1 ⋯ ∂ y n ∂ x m ] (3) \left[ \begin{matrix} \frac{\partial y_1}{\partial x_1} & \cdots & \frac{\partial y_1}{\partial x_m} \\ \vdots & \ddots & \vdots \\ \frac{\partial y_n}{\partial x_1} & \cdots & \frac{\partial y_n}{\partial x_m} \end{matrix} \right] \tag{3} x

  • 2
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值