解析函数的幂级数理论【洛朗展开(Laurent 展开)】

本文详细介绍了函数项级数的一致收敛性质,特别是幂级数与解析函数的关系。讨论了泰勒展开和洛朗展开,强调了它们在不同区域内的收敛性,并给出了具体展开的例子。解析函数的零点特性、级数乘法和待定系数法也在文中有所涉及。
摘要由CSDN通过智能技术生成

函数项级数一致收敛的性质

和函数连续

设级数 ∑ n = 0 ∞ f n ( z ) \sum_{n=0}^{\infty} f_{n}(z) n=0fn(z) 的各项在点集 E E E 上连续,并且一致收敛于 f ( z ) f(z) f(z),则和函数
f ( z ) = ∑ n = 0 ∞ f n ( z ) f(z)=\sum_{n=0}^{\infty} f_{n}(z) f(z)=n=0fn(z)
也在 E E E 上连续。

逐项求积分

设级数 ∑ k = 1 ∞ u k ( z ) \sum_{k=1}^{\infty} u_{k}(z) k=1uk(z) 的各项在曲线 C C C 上连续,并且在 C C C 上一致收敛于 f ( z ) f(z) f(z),则沿 C C C 可以逐项积分
∫ C ∑ k = 1 ∞ u k ( z ) d z = ∑ k = 1 ∞ ∫ C u k ( z ) d z \int_{C} \sum_{k=1}^{\infty} u_{k}(z) \mathrm{d} z=\sum_{k=1}^{\infty} \int_{C} u_{k}(z) \mathrm{d} z Ck=1uk(z)dz=k=1Cuk(z)dz

魏尔斯特拉斯(Weierstrass)定理–逐项求导数

设级数 ∑ n = 0 ∞ f n ( z ) \sum_{n=0}^{\infty} f_{n}(z) n=0fn(z) 的各项均在区域 D D D内解析,且级数在区域 D D D 内闭一致收敛于 f ( z ) f(z) f(z),则
(1) f ( z ) = ∑ n = 0 ∞ f n ( z ) f(z)=\sum_{n=0}^{\infty} f_{n}(z) f(z)=n=0fn(z) 在区域 D D D 内解析;
(2) 在 D D D 内级数可逐项求导至任意阶,且
f ( p ) ( z ) = ∑ n = 0 ∞ f n ( p ) ( z ) , p = 1 , 2 , 3 , ⋯   ; f^{(p)}(z)=\sum_{n=0}^{\infty} f_{n}^{(p)}(z), \quad p=1,2,3, \cdots ; f(p)(z)=n=0fn(p)(z),p=1,2,3,;
(3) ∑ n = 0 ∞ f n ( p ) ( z ) \sum_{n=0}^{\infty} f_{n}^{(p)}(z) n=0fn(p)(z) D D D 内内闭一致收敛于 f ( n ) ( z ) f^{(n)}(z) f(n)(z)

内闭一致收敛

设级数 ∑ n = 0 ∞ f n ( z ) \sum_{n=0}^{\infty} f_{n}(z) n=0fn(z) 的各项均在区域 D D D 内有定义,若 ∑ n = 0 x f n ( z ) \sum_{n=0}^{x} f_{n}(z) n=0xfn(z) D D D 的任一有界闭子区域上一致收敛,则称级数在 D D D 内闭一致收敛。

幂级数与解析函数

最简单的函数项级数是幂级数
∑ n = 0 ∞ c n ( z − a ) n = c 0 + c 1 ( z − a ) + c 2 ( z − a ) 2 + ⋯ \sum_{n=0}^{\infty} c_{n}(z-a)^{n}=c_{0}+c_{1}(z-a)+c_{2}(z-a)^{2}+\cdots n=0cn(za)n=c0+c1(za)+c2(za)2+
其中 c 0 , c 1 , c 2 , ⋯ c_{0}, c_{1}, c_{2}, \cdots c0,c1,c2, a a a 是给定的复常数。

阿贝尔(Abel)定理:若 ∑ k = 0 ∞ a k ( z − b ) k \sum_{k=0}^{\infty} a_{k}(z-b)^{k} k=0ak(zb)k z = z 0 z=z_{0} z=z0 点收敛,则
(1). 它在 ∣ z − b ∣ < ∣ z 0 − b ∣ |z-b|<\left|z_{0}-b\right| zb<z0b 内绝对收敛;
(2). 它在 ∣ z − b ∣ ≤ ρ ( ρ < ∣ z 0 − b ∣ ) |z-b| \leq \rho\left(\rho<\left|z_{0}-b\right|\right) zbρ(ρ<z0b) 上一致收敛。

推论:若幂级数 ∑ k = 0 ∞ a k ( z − b ) k \sum_{k=0}^{\infty} a_{k}(z-b)^{k} k=0ak(zb)k 在某点 z 1 z_{1} z1 发散,则在圆 ∣ z − b ∣ > ∣ z 1 − b ∣ |z-b|>\left|z_{1}-b\right| zb>z1b 外处处发散。

必存在一个有限正数 R R R,使得给定的幂级数 ∑ n = 0 ∞ c n z n \sum_{n=0}^{\infty} c_{n} z^{n} n=0cnzn 在圆周 ∣ z ∣ = R |z|=R z=R 内部绝对收敛,在圆周 ∣ z ∣ = R |z|=R z=R 外部发散。 R R R 称为此幂级数的收敛半径;圆 ∣ z − a ∣ < R |z-a|<R za<R 和圆周 ∣ z − a ∣ = R |z-a|=R za=R 分别称为它的收敛圆和收敛圆周。

收敛半径 R = { lim ⁡ k → ∞ ∣ a k a k + 1 ∣ ( D ′ A l e m b e r t ) lim ⁡ k → ∞ 1 ∣ a k ∣ k ( C a u c h y ) R=\left\{\begin{array}{l} \lim _{k \rightarrow \infty}\left|\frac{a_{k}}{a_{k+1}}\right| \quad (D'Alembert)\\\lim _{k \rightarrow \infty} \frac{1}{\sqrt[k]{\left|a_{k}\right|}} \quad (Cauchy)\end{array}\right. R=limkak+1ak(DAlembert)limkkak 1(Cauchy)

那么我们再来看看幂级数的“优良”性质

幂级数 ∑ k = 0 ∞ a k ( z − b ) k \sum_{k=0}^{\infty} a_{k}(z-b)^{k} k=0ak(zb)k (1) 在收敛圆域内的任意闭圆上一致收敛。
(2) 每一项(通项)都解析。

幂级数的和函数 F ( z ) = ∑ k = 0 ∞ a k ( z − b ) k F(z)=\sum_{k=0}^{\infty} a_{k}(z-b)^{k} F(z)=k=0ak(zb)k 解析、存在任意阶导数等…

我们是否可以将解析函数展开成幂级数呢?

解析函数的泰勒展开(Taylor 展开)

泰勒(Taylor)展开

设函数 f ( z ) f(z) f(z) 在以 a a a 为圆心的圆 C C C 内解析,则对于圆内的任何

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

力语

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值