【Python-Keras】keras.layers.BatchNormalization解析与使用

本文介绍了BatchNormalization的基本概念及其在深度学习中的应用。BatchNormalization通过规范化神经元的输出来提高模型训练速度,并增强模型稳定性,减少过拟合风险。此外,本文还讨论了其在实际部署中的简单实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 什么是BatchNormalization?

(1)Batch Normalization 于2015年由 Google 提出数据归一化方法,往往用在深度神经网络中激活层之前。

(2)其规范化针对单个神经元进行,利用网络训练时一个 mini-batch 的数据来计算该神经元的均值和方差,因而称为 Batch Normalization。

(3)BatchNormalization层在每个batch上将前一层的激活值重新规范化,即使得其输出数据的均值接近0,其标准差接近1

(4)是Normalization 方法中的一种,其他方法有
Layer Normalization —— 横向规范化
Weight Normalization —— 参数规范化

2 作用

(1)将输入神经网络的数据先对其做平移和伸缩变换,将数据分布规范化成在固定区间范围的标准分布

(2)可以加快模型训练时的收敛速度,使得模型训练过程更加稳定,避免梯度爆炸或者梯度消失

(3)并且起到一定的正则化作用,几乎代替了Dropout。控制过拟合,可以少用或不用Dropout和正则

(4)降低网络对初始化权重不敏感

(5)允许使用较大的学习率

3 使用

在调用keras.layers.BatchNormalization 时,我们几乎不需要设定任何参数,只需要输入数据就好。

from tensorflow.python.keras.layers import *

input_bits = Input(shape=(256 ,))
temp = BatchNormalization()(input_bits)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Better Bench

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值