【文献学习】Analysis of Deep Complex-Valued Convolutional Neural Networks for MRI Reconstruction

作者提供TensorFlow复数模型源码https://github.com/MRSRL/complex-networks-release

1 简介和创新点

MRI (Magnetic resonance imaging)核磁共振图像
利用复数神经网络代替实数神经网络实现核磁共振图像重建,以加快扫描时间,并确定各种有前途的复值激活函数的性能。
以往的处理复数是把实数和复数分为两条通道,但是这样做会丢弃数据的某些复数代数结构,并且在数据在整个网络中移动时并不一定要保持数据的相位信息。
当前解决图像重建的的神经网络有GAN、ADMM-Net、MoDL、U-Nets、AutoMap
复数的优越性
• 《Deep complex networks》通过使用复值卷积,减少了每个模型中的参数数量。这减少了网络占用的内存,可学习的参数数量和训练时间。
• 《Associative Long Short-Term Memory》中,提出了复数权重根在内存访问体系结构中更稳定且在数值上更有效。使网络具有更丰富的表示能力。
评价标准

2 模型

2.1 复数激活函数

在这里插入图片描述

2.2 系统模型

作者提出了两个模型作为对比实验,第一个是基于展开式优化的,该优化基于迭代软收缩算法。包括两个模块,一个是数据一致性模块和去噪模块。

  • 数据一致性模块:使用MRI模型强制与物理测量的k空间样本保持数据一致性
  • 去噪模块:使用残差结构块进行去噪输入图像以产生输出图像.除最后一个卷积层外,每个卷积层后都有一个ReLU和一个复数值激活函数

在这里插入图片描述

第二个是U-Net。该网络使用卷积和反卷积来捕获信息。每个橙色框都表示了一个多通道特征图。

  • 红色箭头是复数卷积,每个卷积后跟一个ReLU激活函数
  • 蓝色箭头2x2最大池化,步长为2
  • 最后一层绿色箭头的是一维卷积,作者的画图有误
  • 黑色箭头是copy
  • 经过本人的不确定分析,网络的输入是复数值,输出是二维图片的值

在这里插入图片描述

3 模型参数

L1 损失函数
Adam优化器
学习率0.001
U-Net的Batch-size =3
Unrolled Network的Batch-size = 2
50000epoch
实现框架:Tensorflow
评估标准:NRMSE归一化均方根误差、峰值信噪比PSNR、结构相似性指数SSIM
NRMSE和PSNR是在复数值图像上评估的; 但是,仅在幅度图像上评估SSIM

4 实验分析

TensorFlow实现的复数工具包
https://github.com/MRSRL/complex-networks-release

4.1 激活函数分析

实验过程:
在展开网络中,实数网络的激活函数Relu,复数网络,对比了modRelU,CReLU,zReLu和cardioid,最佳激活函数CReLU
对于该实验,迭代次数和特征图的数量分别固定为4和256。 实值和复数网络被设计为具有几乎相同数量的参数。
实验结果:复数网络相对于实数网络能更好的保留相位信息,最佳激活函数时CReLu
在这里插入图片描述

4.2 网络宽度分析

实验过程:
在展开网络中,通过将迭代次数固定为4,同时改变每一层中的特征图的数量,来评估展开网络宽度对实数网络模型与复数网络模型的性能的影响
实验结果:同时保持每个模型的参数总数大致相同。 当使用复值卷积时,重构性能得到了显着提高。

  • NRMSE:归一化均方根误差
  • PSNR:峰值信噪比
  • SSIM在: 结构相似性指数

在这里插入图片描述

4.3 网络深度分析

实验过程:
在展开网络中,通过训练实数网络和复数网络在每一层中进行2、4、8和12次迭代来改变网络的深度,分析两种网络的性能差异
实验结果:随着迭代次数的变化,特征图的数量是固定的,同时每个模型的参数总数保持大致相同。和实验类似的结果

4.4 网络结构分析

实验过程:
在U-Net网络上,使用复数搭建和实数搭建神经网络,分析在不同的结构上,复数神经网络是否有优势。
实验结果:通过分析图像,实值模型在相位图像的背景中引入了相位包裹错误,而复数网络模型和CS则没有。且复数网络的性能更佳。

4.5 实验结论

复值模型能够更准确地表示数据的复值性质。经过实验分析,复数框架能够轻松的适应其他网络架构,可以广泛应用到超声波,光学成像,雷达,语音和音乐领域
原因分析

  • 通过在具有复值卷积层的模型中使用复值权重,可以使用更多特征图,以使参数数量与具有实值卷积层的模型中的参数数量相同。 这样可以提高重建精度
  • 因为复值网络强制执行保留输入数据相位的结构,所以与实值网络的重构相位相比,复值网络的重构相位通常在视觉上更接近于地面实相(the phase of the ground truth)的相位。

5 疑问和思考

(1)网络模型的具体的输入输出,本人没有阅读明白,经过我的不确定分析,对于两个模型的理解如下

  • 在展开模型中,数据一致性模块处理的复数信号到raw image生成的过程,然后再把带有噪声的图片放入ResNet 中去噪。神经网络实现的图片的去噪
  • 在U-Net中,输入是复数值,输出是二维图片的数值
    (2)提供的源码只是《DeepComplexNetwork》文献提供的源码的TensorFlow复现。对于基于ISTA算法的展开网络和U-Net还需要通过看其他文献了解这两个模型细节,U-Net模型来自《U-net: Convolutional networks for biomedical image segmentation》
  • 2
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 2
    评论
complex-valued neural networks: theories and applications》是一本介绍复数值神经网络理论和应用的电子书。该书首先介绍了复数值神经网络的基本概念和数学原理,包括复数的表示、运算规则和复数神经元的构建。然后详细阐述了复数值神经网络在信号处理、图像识别、自然语言处理等领域的应用,以及与实数值神经网络在性能上的比较和分析。 在理论方面,该书深入解释了复数值神经网络相较于实数值神经网络的优势和特点,如对非平稳信号的处理能力、对相位信息的敏感度等。同时,还介绍了复数值神经网络在频域特征提取、相位编码和解调等方面的重要性,以及复数值神经网络在复杂环境下的稳定性和鲁棒性。 在应用方面,该书涵盖了复数值神经网络在通信系统中的调制解调、自适应滤波和信道均衡等方面的应用,以及在图像处理中的相位提取、变换和压缩等应用,同时还介绍了复数值神经网络在自然语言处理中的词向量表示、语义分析和情感识别等应用。 总之,《complex-valued neural networks: theories and applications》是一本系统全面地介绍了复数值神经网络的理论和应用的电子书。这本书对于研究人员、工程师和学生都有很高的参考价值,可以帮助他们深入理解复数值神经网络的原理和方法,并且在实际应用中发挥其优势。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Better Bench

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值