增量学习中Task incremental、Domain incremental、Class incremental 三种学习模式的概念及代表性数据集?

1 概念

在持续学习领域,Task incremental、Domain incremental、Class incremental 是三种主要的学习模式,它们分别关注不同类型的任务序列和数据分布变化。
在这里插入图片描述

1.1 Task Incremental Learning (Task-incremental)

任务增量学习,也称为任务增量式学习,是指在这种学习模式下,学习器依次面对不同的任务,每个任务有自己独特的类别集合。在推理时,学习器需要能够识别所有曾经学习过的任务。这种学习模式的挑战在于,学习新任务时可能会对旧任务的知识造成灾难性遗忘。代表性的数据集包括Split MNIST、Split CIFAR-10、Split CIFAR-100。

  • Split MNIST:MNIST数据集被分成多个任务,每个任务包含不同的数字。例如,第一任务为0-1,第二任务为2-3,依此类推。

  • Split CIFAR-10:CIFAR-10数据集被分为多个任务,每个任务包含不同的类别。例如,第一任务为飞机和汽车,第二任务为鸟和猫,依此类推。

  • Split CIFAR-100:CIFAR-100数据集被分为多个任务,每个任务包含不同的类别。例如,前20类作为第一任务,接下来的20类作为第二任务,依此类推。

1.2 Domain Incremental Learning (Domain-incremental)

域增量学习,又称为领域增量学习,是指学习器在面对一系列任务时,每个任务的数据输入分布(domain)可能不同,但任务的类别集合保持一致。这种学习模式模拟了现实世界中数据分布随时间变化的情况。领域增量学习的挑战在于如何适应新数据分布的同时,保持对旧数据的识别能力。代表性的数据集包括Permuted MNIST、Rotated MNIST、VLCS。

  • Permuted MNIST:对MNIST数据集的像素进行随机置换,产生多个任务。每个任务都有相同的类别(0-9),但输入数据的像素排列不同。

  • Rotated MNIST:将MNIST数据集的图像进行不同角度的旋转生成多个任务。例如,0度、15度、30度等。

  • VLCS:包含来自PASCAL VOC 2007, LabelMe, Caltech, 和Sun的数据,用于不同领域的图像分类任务。

1.3 Class Incremental Learning (Class-incremental)

类别增量学习,是指学习器在面对一系列任务时,每个任务引入新的类别,而旧类别不再出现。学习器需要在推理时能够区分所有曾经学习过的类别,但无法访问任务ID。这种学习模式的挑战在于,学习新类别的同时,要避免对旧类别的知识造成灾难性遗忘。代表性的数据集包括iCIFAR-100、iMNIST和CORe50等 。

  • iCIFAR-100(Incremental CIFAR-100):CIFAR-100数据集被分成多批,每一批包含不同的新类别。模型需在学习新类别的同时保留对旧类别的知识。

  • iMNIST(Incremental MNIST):类似于iCIFAR-100,但使用MNIST数据集。模型逐渐学习新的数字类别。

  • CORe50:一个包含50类物体的连续学习基准数据集,用于物体识别任务。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Better Bench

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值