题目描述
长期以来,LiMn2O4常常会因为自己成为不了数学选手而苦恼,并曾经有过一次转型的尝试。那是一个月黑风高的十一长假,LiMn2O4拿起了厚厚的《具体数学》。路过的practer看见了,practer说你有没有办法求一下这个公式的值:
LiMn2O4看了眼公式,说这个值有无理数,怎么表示?可以做?于是practer给了LiMn2O4第另一个公式:
求第一个公式减第二个公式的值。LiMn2O4稍加思考后觉得这个太简单了,他还要看《具体数学》,没有时间。现在交给聪明的你来解决这个问题,请你求出新的公式的第N项。
输入
第一行有一个正整数K。
接下来有K行,每行有一个数N。
数据保证1≤K≤100 00,0≤N≤1 000 000 000。结果对1 000 000 007取模。
输出
输出k行,第i行代表第i个数据的的结果
样例输入
2
1
1024
样例输出
1
754854590
思路
第一眼看到这个公式的时候我有点懵,后来查了才知道是斐波那契数列的通项公式,那就可以用矩阵快速幂的方法来写这道题了
代码实现
#include<bits/stdc++.h>
using namespace std;
const int N=10005;
const int mod=1000000007;
typedef long long ll;
struct ma
{
ll a[2][2];
void init()
{
memset(a,0,sizeof(a));
for(int i=0;i<2;i++) a[i][i]=1;
}
};
ma maq(ma a,ma b)
{
ma ans;
for(int i=0;i<2;i++)
{
for(int j=0;j<2;j++)
{
ans.a[i][j]=0;
for(int k=0;k<2;k++)
{
ans.a[i][j]+=a.a[i][k]*b.a[k][j];
ans.a[i][j]%=mod;
}
}
}
return ans;
}
ma mapow(ma a,ll b)
{
ma ans;
ans.init();
while(b)
{
if(b&1) ans=maq(ans,a);
a=maq(a,a);
b>>=1;
}
return ans;
}
int main()
{
int T;
ma st;
st.a[0][0]=1,st.a[0][1]=1;
st.a[1][0]=1,st.a[1][1]=0;
scanf("%d",&T);
while(T--)
{
ll n;
scanf("%lld",&n);
ma ans=mapow(st,n);
printf("%lld\n",ans.a[0][1]%mod);
}
return 0;
}