LiMn2O4的数学之路(斐波那契数列)

题目描述
长期以来,LiMn2O4常常会因为自己成为不了数学选手而苦恼,并曾经有过一次转型的尝试。那是一个月黑风高的十一长假,LiMn2O4拿起了厚厚的《具体数学》。路过的practer看见了,practer说你有没有办法求一下这个公式的值:
在这里插入图片描述
LiMn2O4看了眼公式,说这个值有无理数,怎么表示?可以做?于是practer给了LiMn2O4第另一个公式:
在这里插入图片描述
求第一个公式减第二个公式的值。LiMn2O4稍加思考后觉得这个太简单了,他还要看《具体数学》,没有时间。现在交给聪明的你来解决这个问题,请你求出新的公式的第N项。

输入
第一行有一个正整数K。
接下来有K行,每行有一个数N。
数据保证1≤K≤100 00,0≤N≤1 000 000 000。结果对1 000 000 007取模。

输出
输出k行,第i行代表第i个数据的的结果

样例输入
2
1
1024

样例输出
1
754854590

思路
第一眼看到这个公式的时候我有点懵,后来查了才知道是斐波那契数列的通项公式,那就可以用矩阵快速幂的方法来写这道题了

代码实现

#include<bits/stdc++.h>
using namespace std;

const int N=10005;
const int mod=1000000007;
typedef long long ll;

struct ma
{
    ll a[2][2];
    void init()
    {
        memset(a,0,sizeof(a));
        for(int i=0;i<2;i++) a[i][i]=1;
    }
};

ma maq(ma a,ma b)
{
    ma ans;
    for(int i=0;i<2;i++)
    {
        for(int j=0;j<2;j++)
        {
            ans.a[i][j]=0;
            for(int k=0;k<2;k++)
            {
                ans.a[i][j]+=a.a[i][k]*b.a[k][j];
                ans.a[i][j]%=mod;
            }
        }
    }
    return ans;
}

ma mapow(ma a,ll b)
{
    ma ans;
    ans.init();
    while(b)
    {
        if(b&1) ans=maq(ans,a);
        a=maq(a,a);
        b>>=1;
    }
    return ans;
}
int main()
{
    int T;
    ma st;
    st.a[0][0]=1,st.a[0][1]=1;
    st.a[1][0]=1,st.a[1][1]=0;
    scanf("%d",&T);
    while(T--)
    {
        ll n;
        scanf("%lld",&n);
        ma ans=mapow(st,n);
        printf("%lld\n",ans.a[0][1]%mod);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值