高中题(线性代数)

该博客介绍了一种解决线性递推序列问题的高效方法——矩阵快速幂。通过建立递推矩阵,利用矩阵快速幂计算给定数列的三次方和,从而求解题目中给出的数列问题。给出了样例输入、输出,以及具体思路和代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述
一个数列{an},满足an+2=x⋅an+1+y⋅an,求在这里插入图片描述
答案对998244353取模。

输入
第一行一个整数T,即数据组数。
下面T行,每行5个整数,即n,a1,a2,x,y,含义如上。

输出
共T行,每行1个整数,即每组数据的答案。

样例输入
3
3 0 2 0 0
3 1 2 0 1
3 1 0 0 1

样例输出
8
10
2

提示
对于100%的数据,1≤T≤104,1≤n≤1018,0≤a1,a2,x,y≤998244352。

思路
这题要求的对象是递推式的三次方和,因此可以通过矩阵快速幂的方法加速求递推
∑ n i = 1 a i 3 在 第 n 项 为 s n \sum_{n}^{i=1} a_{i}^{3}在第n项为s_{n} ni=1ai3nsn,
那么可以得到 s n = ( x ∗ a n − 1 + y ∗ a n − 2 ) 3 + s n − 1 s_{n}=(x*a_{n-1}+y*a_{n-2})^{3}+s_{n-1} sn=(xan1+yan2)3+sn1,
通过an+2=x⋅an+1+y⋅an,
a n 分 解 为 a n − 1 a n − 2 的 形 式 a_{n}分解为a_{n-1} a_{n-2}的形式 anan1an2
得到 s n = x 3 a n − 1 3 + 3 x 2 y a n − 1 2 a n − 2 + 3 x y 2 a n − 1 a n − 2 2 + y 3 a n − 2 3 s_{n}=x^{3}a_{n-1}^{3}+3x^{2}ya_{n-1}^{2}a_{n-2}+3xy^{2}a_{n-1}a_{n-2}^{2}+y^{3}a_{n-2}^{3} sn=x3an13+3x2yan12an2+3x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值