一、引言
GRACE(Gravity Recovery and Climate Experiment)卫星是美国国家航空航天局(NASA)和德国航空航天中心(DLR)合作运营的一组卫星,在2002年至2017年期间对地球引力场进行了高精度测量。由于月球的引力也会对地球引力场产生影响,因此GRACE卫星还被用来探测月球引力场的细微变化,以研究月球内部的构造和演化。
GRACE月时变迁模型用于描述月球引力场的时变特征,是研究月球结构和演化的重要工具。然而,由于各种原因(如仪器故障、数据传输中断等),GRACE卫星获取的数据中可能会存在缺失值。这些缺失值会影响月时变迁模型的精度和可靠性,因此有必要采取合适的方法进行填补。
本文将介绍一种常用的缺失值填补方法——三次多项式插值法,并探讨其在GRACE月时变迁模型中的应用。这个方法在MODIS卫星或者任何缺失数据的栅格文件,nc文件都适用。
二、三次多项式插值法简介
插值法是一种在给定数据点的前提下,通过构造描述这些数据点的函数来近似未知函数的方法。当数据点存在缺失值时,插值法可以通过其他已知数据点来填补缺失值,从而使得数据的连续性和完整性得到保证。
三次多项式插值法是插值法中较为常用的一种方法。其基本思想是,对于给定的数据点,通过构造一个三次多项式函数来近似未知函数,并满足函数在每个数据点处的函数值等于相应数据点的函数值。通过求解三次多项式的系数,可以得到插值函数,并用于填补数据缺失值。
三次多项式插值法的优点在于可以较好地拟合数据的非线性特征,同时又不会过度拟合数据。此外,三次多项式插值法还具有较高的计算效率和较低的误差。
三、数据集
- 数据预处理
library(ncdf4)
ncdata <- nc_open("data.nc")
lon <- ncvar_get(ncdata,'lon') # 经度
lat <- ncvar_get(ncdata,'lat') # 纬度
time <- ncvar_get(ncdata,'time') # 时间
lwe_thickness <- ncvar_get(ncdata,'lwe_thickness') # 覆盖厚度
# 这份测绘数据起始时间是2002.01.01,time的值表示过去的天数
time <- as.Date("2002-01-01") + time
library(data.table)
# 对数据进行重组和转置,以扁平化数据结构
lwe_thickness_flat <- as.data.table(lwe_thickness)
# lon
lwe_thickness_flat$V1 <- lon[lwe_thickness_flat$V1]
# lat
lwe_thickness_flat$V2 <- lat[lwe_thickness_flat$V2]
# time
lwe_thickness_flat$V3 <- time[lwe_thickness_flat$V3]
# 将数据框lwe_thickness_flat转换为数据表对象
lwe_thickness_flat<-as.data.table(lwe_thickness_flat)
# 设置列名
setnames(lwe_thickness_flat, c("V1","V2","V3","value"), c("lon","lat","time","lwe_thickness"))
- 获取缺失子集作为演示
library(dplyr)
# 对数据进行日期筛选
sampled_data <- lwe_thickness_flat %>%
filter(time < as.Date("2003-12-16"))
- 结果展示
lon lat time lwe_thickness
1: 0.125 -89.875 2002-04-18 -2.468668
2: 0.125 -89.875 2002-05-10 -1.569404
3: 0.125 -89.875 2002-08-16 -3.044039
4: 0.125 -89.875 2002-09-16 -3.201635
5: 0.125 -89.875 2002-10-16 -1.785586
---
17625596: 359.875 89.875 2003-07-16 3.973456
17625597: 359.875 89.875 2003-08-16 3.146194
17625598: 359.875 89.875 2003-09-16 3.110446
17625599: 359.875 89.875 2003-10-16 4.867654
17625600: 359.875 89.875 2003-11-16 2.196712
四、填补缺失值
- 找出缺失的年月
time_sub <- unique(sampled_data$time)
# 提取年月信息
year_month <- format(as.Date(time_sub), "%Y-%m")
# 构造包含所有年月的数据框
start_date <- min(year_month)
end_date <- max(year_month)
all_dates <- seq(as.Date(paste0(start_date, "-01")), as.Date(paste0(end_date, "-01")), by = "month")
all_year_month <- format(all_dates, "%Y-%m")
df_all_dates <- data.frame(year_month = all_year_month, date = all_dates, stringsAsFactors = FALSE)
# 找出缺失的日期
missing_dates <- df_all_dates[!df_all_dates$year_month %in% year_month, ]
# 打印输出缺失的日期
print(missing_dates$year_month)
- 填充经度、纬度和时间
# 选取一个栅格的数据
grid_data <- lwe_thickness_flat %>%
filter(time == as.Date("2002-04-18"))
grid_data$lwe_thickness <- NA
# 插入缺失年月的数据
for(i in 1:nrow(missing_dates)){
grid_data$time <- missing_dates$date[i]
sampled_data <- rbind(sampled_data, grid_data)
}
- 按照时间排序
sampled_data <- sampled_data[order(sampled_data$time)]
# 检查排序结果
time_order <- unique(sampled_data$time)
time_order
结果展示:
[1] "2002-04-18" "2002-05-10" "2002-06-01" "2002-07-01" "2002-08-16"
[6] "2002-09-16" "2002-10-16" "2002-11-16" "2002-12-16" "2003-01-16"
[11] "2003-02-15" "2003-03-16" "2003-04-16" "2003-05-11" "2003-06-01"
[16] "2003-07-16" "2003-08-16" "2003-09-16" "2003-10-16" "2003-11-16"
缺失的三个月份补充进去了
- 三次多项式插值
# 导入插值包
install.packages("rugarch")
install.packages("zoo")
library(rugarch)
library(zoo)
library(imputeTS)
# 使用三次多项式插值填补缺失值
sampled_data$lwe_thickness_filled <- na.spline(sampled_data$lwe_thickness)
# 过滤出缺失的数据,查看数据是否有插入
grid_data_filled <- sampled_data %>%
filter(time == as.Date("2002-06-01"))
# 写入文件并忽略行名
fwrite(sampled_data, file = "D:/log/grace.csv", row.names = FALSE)
结果展示:
lon lat time lwe_thickness lwe_thickness_filled
1: 0.125 -89.875 2002-06-01 NA -1.734405e+00
2: 0.125 -89.625 2002-06-01 NA -2.077785e+00
3: 0.125 -89.375 2002-06-01 NA -2.421165e+00
4: 0.125 -89.125 2002-06-01 NA -2.764544e+00
5: 0.125 -88.875 2002-06-01 NA -3.107923e+00
---
1036796: 359.875 88.875 2002-06-01 NA -1.765162e+05
1036797: 359.875 89.125 2002-06-01 NA -1.765162e+05
1036798: 359.875 89.375 2002-06-01 NA -1.765162e+05
1036799: 359.875 89.625 2002-06-01 NA -1.765162e+05
1036800: 359.875 89.875 2002-06-01 NA -1.765162e+05
如果不想追加一列lwe_thickness_filled,可以直接赋值给lwe_thickness。我追加一列的目的是方便对比。
参考文献:
Using Satellite‑Based Terrestrial Water Storage Data: A Review