单调栈练习(二)— 柱状图中最大的矩形

文章讲述了如何利用单调栈的算法思想解决LeetCode上的一个问题,即给定非负整数数组表示柱状图高度,计算能够勾勒出的最大矩形面积。通过维护一个单调递增栈,动态计算每一步可以形成的最大矩形,最后返回最大面积。
摘要由CSDN通过智能技术生成

题目:
这是一道LeetCode上的原题:链接地址
给定 n 个非负整数,用来表示柱状图中各个柱子的高度。每个柱子彼此相邻,且宽度为 1 。
求在该柱状图中,能够勾勒出来的矩形的最大面积。
在这里插入图片描述

思路
因为是力扣原题,所以这道题省略了暴力解和对数器的过程,直接用单调栈的方法写完跑力扣。

整体思路是:遍历数组并维护一个栈底 -> 栈顶是由小到大的单调栈结构。当栈顶元素被弹出后,进行结算。
结算的方式是,以当前弹出元素作为整个矩阵的高,左右向外扩,找到左侧最近且小和右侧最近且小的数作为边界。囊括的中间部分就是以当前高度所形成的矩阵大小。
遍历一遍,以arr[] 中每个数字都作为一次矩阵的高。求max即可。

代码

解释下代码:
cur:是你当前在单调栈中弹出来的数,是满足的上面 if(当前数比栈顶数小) 条件才弹出来的。
所以右侧边界就是当前的 i 。
左侧边界就是弹出后的单调栈的栈顶元素(没有则为-1)。
所以以当前cur为整个矩阵的统一高度,求此时有多少个数。

最后的while,当数组遍历完后,如果栈中不为null,则直接循环弹出栈中元素。
此时,因为数组已经为null,所以不会再有值使栈顶元素弹出,所以右侧没有比当前栈顶元素小的值了。此时栈中剩余元素完全符合由小到大的规则。
所以此时右侧囊括到arr.length。
左侧如果有值,则为左侧最近且小的范围,如果没有,则到 -1。
再次比较大小即可。

public int largestRectangleArea(int[] heights) {
        if (heights == null || heights.length == 0) {
            return 0;
        }

        Stack<Integer> stack = new Stack<>();
        Integer max = Integer.MIN_VALUE;
        for (int i = 0; i < heights.length; i++) {
            while (!stack.isEmpty() && heights[stack.peek()] >= heights[i]) {
                Integer cur = stack.pop();
                Integer leftMin = stack.isEmpty() ? -1 : stack.peek();
                max = Math.max(max, (i - leftMin - 1) * heights[cur]);
            }
            stack.push(i);
        }
        while (!stack.isEmpty()){
            Integer cur = stack.pop();
            Integer leftMin = stack.isEmpty() ? -1 : stack.peek();
            max = Math.max(max, (heights.length - leftMin - 1) * heights[cur]);
        }
        return max;
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值