端到端模型详解

1. 引言

在人工智能和机器学习领域,端到端模型正日益成为一种重要的范式转变。相较于传统的多阶段机器学习流程,端到端模型的核心思想在于训练一个单一的、通常较为复杂的模型,使其能够直接从原始输入数据映射到最终期望的输出结果,从而显著减少或完全消除对中间处理步骤(特别是手工特征工程)的依赖 1。这种方法在近年来取得了显著的进展,并在自然语言处理、计算机视觉、语音识别以及自动驾驶等多个领域展现出强大的能力和潜力 2。本报告旨在对端到端模型进行全面而细致的讲解,内容将涵盖其定义、与传统方法的区别、代码实现示例、典型网络架构、在系统架构中的作用、训练过程、架构设计原则以及不同端到端模型的比较分析。

端到端模型的出现,反映了人工智能领域对深度学习模型自动学习复杂数据表示能力的日益信任。与需要人工干预来提取和选择关键特征的传统方法不同,端到端学习赋予模型自主发现数据内在模式和最有效特征的能力,这有可能带来更高效、更强大的AI系统 1。

2. 端到端模型的定义

端到端学习在人工智能和机器学习的语境下,指的是一种模型能够学习从初始输入阶段到最终输出结果之间所有步骤的技术 1。这种方法通常采用深度学习,其中模型的所有不同组成部分都是同步训练的,而不是按顺序进行训练 5。更具体地说,端到端学习训练一个单一的模型,使其能够直接执行从原始输入到最终输出的任务,而无需任何中间步骤或人工特征工程 2。

一个典型的例子是将录制的音频片段转换为书面文本的过程 3。传统的做法可能涉及多个中间步骤,例如提取声学特征、进行音素识别,然后将音素组合成单词,最后形成文本。而端到端模型则可以直接将原始音频输入模型,并直接预测输出的文本,从而绕过了所有这些中间环节 3。另一个重要的例子是自动驾驶系统,该系统接收来自摄像头、雷达和激光雷达等原始传感器的数据,并直接输出车辆的控制指令,例如转向角度、油门和刹车 1。

端到端模型的精髓在于其解决问题的整体性方法,模型学习的是从原始输入到期望输出的完整映射函数。这与传统方法将问题分解为多个独立优化的子任务形成了鲜明对比 5。通过将整个系统作为一个单元进行训练,端到端模型有可能捕捉到数据中更复杂和细致的关系,而这些关系在问题被分解为独立的、分别优化的阶段时可能会丢失。模型可以直接针对最终任务的结果进行优化,而不是针对可能与最终目标不完全一致的中间表示进行优化。

3. 端到端模型与传统机器学习流程

  • 3.1. 传统机器学习工作流程: 传统的机器学习流程通常包含多个阶段 3。首先是数据收集,获取用于训练和评估模型的数据。接下来是数据预处理,包括数据清洗、标准化、处理缺失值等,以确保数据质量。一个至关重要的步骤是特征工程,这需要领域专家基于对数据的理解,手工提取、选择和转换与任务相关的特征 3。然后是模型选择,根据任务类型和数据特点选择合适的机器学习算法。模型训练阶段则使用经过特征工程处理的数据来训练选定的算法。之后,需要对训练好的模型在未见过的数据上进行评估,以衡量其泛化能力。最后,将性能满足要求的模型部署到实际应用中。特征工程在传统机器学习中占据核心地位,它往往需要大量的时间和专业知识来确定对于特定算法最有用的特征 3。此外,传统流程的各个阶段通常是独立开发和优化的,这可能导致整体性能并非最优,因为每个阶段的优化目标可能与最终目标不完全一致 3。

  • 3.2. 端到端模型工作流程: 端到端学习旨在用一个单一的学习算法(通常是深度神经网络)来取代传统的多阶段流程,该算法可以直接将原始输入数据映射到期望的输出 1。这种方法的显著特点是省略或自动化了手工特征工程的步骤,模型能够从原始数据中自行学习提取相关的特征 1。整个模型,从输入层到输出层,都使用大量的标注数据进行联合训练,目标是直接优化最终的预测结果 2。

  • 3.3. 代码实现上的区别: 在代码实现方面,传统机器学习和端到端模型存在显著的差异 3。

  • 传统机器学习: 传统机器学习的代码实现通常包含多个独立的模块或脚本,对应于流程的每个阶段。例如,会使用Pandas等库进行数据处理和清洗,使用scikit-learn等库实现各种特征工程技术(如特征缩放、降维、特征选择)以及训练传统的机器学习算法(如线性回归、支持向量机、决策树) 3。

  • 端到端模型: 端到端模型的代码实现主要集中在使用深度学习框架(如TensorFlow或PyTorch)构建神经网络架构。代码需要指定网络的层数、类型、连接方式以及激活函数。训练过程则直接将原始输入数据馈送到网络中,并通过优化算法调整网络的权重,以最小化预测输出与真实标签之间的差异。特征提取的过程在网络的各个层中隐式完成,无需编写单独的特征工程代码 3。

值得一提的是,自动化机器学习(AutoML)的兴起旨在自动化传统机器学习流程的许多步骤,包括特征工程、模型选择和超参数调优 13。然而,AutoML仍然是在自动化一个包含多个独立阶段的流程,这与端到端模型将整个学习过程封装在一个单一模型中的理念有所不同。

4. 代码实现示例

  • 4.1. TensorFlow:

  • 端到端图像分类: 以下示例展示了如何使用TensorFlow的Keras API实现端到端的图像分类 14。原始图像数据可以直接从目录加载,标签会根据目录结构自动生成 14。像素值可以通过简单的映射函数进行归一化处理 14。一个简单的卷积神经网络模型可以使用tf.keras.Sequential()构建,包含卷积层 (Conv2D)、池化层 (MaxPooling2D)、扁平化层 (Flatten) 和用于分类的全连接输出层 (Dense) 14。模型的输入形状对应于原始图像的尺寸。模型通过指定优化器(如'adam')、损失函数(如'binary_crossentropy'或'sparse_categorical_crossentropy')和评估指标(如'accuracy')进行编译 15。然后,可以使用model.fit()方法直接在预处理后的图像数据集和标签上进行训练,模型定义中不包含任何显式的特征工程步骤 14。训练好的模型可以使用model.evaluate()在独立的测试数据集上进行评估 14。

  • 端到端自然语言翻译: 以下示例展示了如何使用TensorFlow实现端到端的自然语言翻译 19。可以使用tf.data.TextLineDataset()加载原始文本数据(例如,包含西班牙语-英语句子对的文件) 19。tf.keras.layers.TextVectorization()可以用于预处理和转换原始文本为数值序列(token),包括标准化和创建词汇表 19。一个序列到序列的模型(例如,使用带有注意力机制的LSTM编码器-解码器架构)可以直接将原始文本(在向量化之后)作为输入,并直接输出翻译后的文本 19。这个翻译模型可以端到端地在成对的文本序列上进行训练 19。

  • 4.2. PyTorch:

  • 端到端图像分类: 以下示例展示了如何使用PyTorch实现端到端的图像分类 20。可以使用torchvision.datasets加载原始图像数据(例如,来自MNIST或CIFAR等数据集),并使用torchvision.transforms应用转换,包括transforms.ToTensor()将图像转换为PyTorch张量,以及transforms.Normalize()对像素值进行归一化 20。一个CNN模型可以定义为一个继承自torch.nn.Module的类,其中层(卷积层 nn.Conv2d、池化层 nn.MaxPool2d、全连接层 nn.Linear)在__init__方法中定义,前向传播逻辑在forward方法中实现 20。forward方法的输入将是预处理后的图像张量。训练循环涉及迭代torch.utils.data.DataLoader,执行前向传播,使用损失函数(如torch.nn.CrossEntropyLoss)计算损失,使用loss.backward()执行反向传播,并使用torch.optim中的优化器(如torch.optim.Adam或torch.optim.SGD)更新模型的权重 20。

  • 对于端到端的NLP任务,例如文本分类或生成,PyTorch的torch.nn模块和Hugging Face Transformers等库提供了Transformer的实现 25。

这些代码示例清晰地展示了端到端模型的核心思想:模型接收原始或经过最少量预处理的数据作为输入,并通过定义的神经网络架构和训练过程直接学习执行期望的任务(分类、翻译)。模型定义中不包含显式的、手工的特征工程步骤是其关键特征。通过观察TensorFlow和PyTorch的代码片段,可以看到一个一致的模式,即端到端模型的实现主要侧重于设置数据管道以将原始数据馈送到模型中,并定义神经网络的架构,该网络将学习提取相关特征并执行最终的输出映射。然后,训练过程基于输入数据和期望的输出优化这些层的参数。这与传统的机器学习形成对比,在传统的机器学习中,很大一部分代码将专门用于在将特征馈送到单独的学习算法之前显式地进行特征工程。

5. 端到端模型中的典型网络架构

  • 5.1. 自然语言处理(NLP):

  • 循环神经网络(RNN)及其变体,如长短期记忆网络(LSTM)和门控循环单元(GRU),是端到端模型在序列到序列任务(如机器翻译和文本生成)中的早期且仍然相关的架构 28。这些网络通过维护内部状态来处理可变长度的输入序列。

  • Transformer架构于2017年引入,对NLP领域产生了变革性的影响。它利用自注意力机制来建模序列中所有元素之间的关系,实现了并行处理,并在各种NLP任务(如机器翻译、文本摘要、问答和命名实体识别)中取得了最先进的结果 28。基于Transformer架构构建的流行模型包括BERT、GPT及其变体 34。

  • 端到端的语音处理技术,如自动语音识别(ASR),直接将原始音频信号转换为标记序列(字形、音素等),通常使用基于RNN或Transformer的序列到序列模型 28。

  • 5.2. 计算机视觉:

  • 卷积神经网络(CNN)是许多端到端计算机视觉任务(包括图像分类、物体检测、图像分割和视频分析)的基础架构。模型通过卷积层、池化层和非线性激活函数直接从原始像素数据中学习提取分层特征 3。有影响力的CNN架构包括AlexNet、VGGNet、ResNet、Inception/GoogLeNet和EfficientNet 35。

  • 视觉Transformer(ViT)将Transformer架构从NLP领域应用于计算机视觉,通过将图像视为补丁(token)序列,在图像分类、物体检测和图像生成等任务中表现出卓越的性能,尤其是在大规模数据集上训练时 35。

  • 用于自动驾驶系统的端到端模型直接接收原始传感器输入(摄像头图像、LiDAR点云、雷达数据),并使用深度学习架构(通常涉及CNN、RNN、Transformer或它们的组合)输出驾驶命令(转向角、加速度、制动) 4。

端到端模型架构的选择在很大程度上取决于输入数据的性质(序列数据与空间数据)以及特定的任务需求。虽然CNN在计算机视觉领域占据主导地位,RNN在序列处理领域也曾是主流,但Transformer架构已经展现出卓越的通用性,并在各种模态中取得了最先进的结果。不同类型的数据具有不同的底层结构。对于文本和音频等序列数据,能够处理序列并捕获时间依赖性的模型至关重要。RNN最初是首选架构,但Transformer在捕获长距离依赖性和实现并行处理方面已被证明更有效。对于图像等空间数据,CNN旨在利用像素网格内的局部结构和分层关系。视觉Transformer的最新成功表明,即使对于视觉任务,基于注意力的机制也越来越受到青睐。为端到端模型选择的架构必须与数据的固有属性和目标应用程序的特定需求相一致。

6. 端到端模型在系统架构中的作用

尽管端到端模型旨在实现从输入到输出的直接映射,但它们通常作为更庞大、更复杂的系统架构中的核心组件而存在 42。

  • 自动驾驶: 端到端的驾驶模型可以直接接收原始传感器数据并输出控制指令 4。然而,整个系统可能仍然包含用于传感器数据采集、预处理(例如,校准)和执行(控制车辆硬件)的模块。也存在混合方法,其中各个模块(感知、规划、控制)本身就是机器学习模型,并以端到端的方式联合训练 44。

  • 聊天机器人: 端到端的聊天机器人通常由大型语言模型驱动,它与用户界面交互以接收输入和显示输出 42。系统可能还包括用于访问和检索知识库信息的组件,以增强模型的响应 47。Prompt flow等框架可以协调用户提示、数据存储和语言模型之间的交互 42。

  • 推荐系统: 端到端的会话推荐模型处理用户交互序列以预测下一个项目 49。这些模型与数据存储交互以访问用户行为数据,并与应用程序前端交互以显示推荐 49。双塔模型和DLRM代表了推荐系统中使用的其他架构 50。

  • 通用AI应用: 部署在云环境中的端到端模型通常与各种服务交互,用于数据存储、预处理(如果极少)、模型服务(例如,通过API)以及与其他应用程序或工作流程的集成 42。集成架构原则确保IT环境的不同组件之间的数据流畅流动和通信 51。

即使端到端模型旨在简化核心学习过程,它们也通常需要集成到更广泛的系统架构中,以处理数据输入、输出以及与外部环境或用户的交互。这些交互的设计对于应用程序的整体功能和有效性至关重要。虽然端到端模型可能是AI应用程序的核心“大脑”,但它需要从某个地方接收输入并产生可用的输出。在自动驾驶中,这意味着与传感器和执行器交互。在聊天机器人中,它涉及通过用户界面与用户交互。在推荐系统中,它需要访问用户数据并提供一种显示推荐的方式。因此,理解端到端模型如何融入更大的系统架构以及它如何与其他组件通信对于构建完整且功能齐全的AI解决方案至关重要。

7. 端到端模型的训练

  • 7.1. 训练过程: 端到端模型的有效训练,特别是深度神经网络,需要大量标注的高质量训练数据,以使其能够直接从原始输入中学习复杂的映射和提取相关特征 2。典型的训练过程包括:数据加载和预处理(根据数据类型和模型,可能包括归一化、缩放、分词等),定义端到端模型的架构(例如,神经网络中的层及其连接),选择合适的损失函数(用于衡量模型预测与真实值之间的差异)和优化器(用于更新模型参数),以小批量的形式在训练数据集上迭代指定的轮数,执行前向传播以获得预测,计算损失,然后使用反向传播计算梯度并更新模型的权重以最小化损失 14。使用独立的验证数据集来监控模型在训练过程中对未见过数据的性能至关重要,这有助于进行超参数调整和实施早停策略以防止过拟合 14。

  • 7.2. 代码实现(TensorFlow): 可以使用Keras高级API进行训练,通过model.compile()方法指定优化器、损失函数和评估指标,并通过model.fit()方法提供训练数据、验证数据和训练轮数 14。可以使用回调函数(如EarlyStopping在验证损失停止改善时停止训练,以及TensorBoard可视化训练进度) 14。对于更精细的控制,可以使用tf.GradientTape()实现自定义训练循环 59。

  • 7.3. 代码实现(PyTorch): 典型的PyTorch训练循环涉及手动迭代从DataLoader获取的轮数和批次。在每次迭代中,使用optimizer.zero_grad()重置优化器的梯度,使用model(inputs)执行前向传播,使用指定的损失函数(如nn.CrossEntropyLoss)计算损失,使用loss.backward()执行反向传播计算梯度,并使用optimizer.step()更新模型的参数 20。可以使用torch.nn定义损失函数,使用torch.optim选择和配置优化器 20。

  • 7.4. 关键训练参数:

  • 批大小(Batch Size): 在一次迭代中处理的训练样本数,之后更新模型的参数 15。

  • 学习率(Learning Rate): 优化算法在每次迭代中更新模型权重的步长大小,控制着模型参数更新的幅度 16。可以使用学习率调度器在训练过程中调整学习率 16。

  • 轮数(Epochs): 在训练过程中,整个训练数据集被完整地传递给模型的次数 14。

  • 损失函数(Loss Function): 用于衡量模型预测输出与真实标签之间差异的函数,例如分类问题中的交叉熵损失和回归问题中的均方误差 15。

  • 优化器(Optimizer): 用于更新模型参数以最小化损失的算法,包括随机梯度下降(SGD)、Adam和RMSprop等 15。

有效训练端到端模型需要仔细选择和调整超参数。这些模型中大量的参数需要大量的计算资源,并且通常受益于批归一化和dropout等技术以提高泛化能力。由于端到端模型的复杂性,训练过程涉及控制模型如何从数据中学习的参数的精细平衡。批大小的选择会影响训练过程的稳定性

引用的著作
  1. End to End Learning - Lark, 访问时间为 三月 27, 2025, End to End Learning

  2. What is end-to-end learning in AI? - TEDAI San Francisco, 访问时间为 三月 27, 2025, What is end-to-end learning in AI? | TEDAI San Francisco

  3. What Is End-to-End Deep Learning? | Baeldung on Computer Science, 访问时间为 三月 27, 2025, https://www.baeldung.com/cs/end-to-end-deep-learning

  4. End-to-end system architectures in autonomous driving: Comparative analysis against modular design and technological exploration - Advances in Engineering Innovation, 访问时间为 三月 27, 2025, https://www.ewadirect.com/proceedings/ace/article/view/16688/pdf

  5. www.clickworker.com, 访问时间为 三月 27, 2025, End to End learning - Term explanation in the AI glossary

  6. End to End learning - Term explanation in the AI glossary - Clickworker, 访问时间为 三月 27, 2025, End to End learning - Term explanation in the AI glossary

  7. Hydra MDP 的端到端按比例驱动- NVIDIA 技术博客, 访问时间为 三月 27, 2025, Hydra MDP 的端到端按比例驱动 - NVIDIA 技术博客

  8. End-to-End Autonomous Driving using Deep Learning | by Pranavs Chib | Medium, 访问时间为 三月 27, 2025, https://medium.com/@pranavs_chib/end-to-end-autonomous-driving-using-deep-learning-8a94ecb3bb6b

  9. 深度学习与机器学习- Azure Machine Learning | Microsoft Learn, 访问时间为 三月 27, 2025, 深度学习与机器学习 - Azure Machine Learning | Microsoft Learn

  10. how to understand 'end to end' in deep learning? - Cross Validated, 访问时间为 三月 27, 2025, https://stats.stackexchange.com/questions/218961/how-to-understand-end-to-end-in-deep-learning

  11. The Role of a Machine Learning Pipeline in the ML Lifecycle - Snowflake, 访问时间为 三月 27, 2025, The Role of a Machine Learning Pipeline in the ML Lifecycle | Snowflake

  12. What is a Machine Learning Pipeline? - Valohai, 访问时间为 三月 27, 2025, What is a Machine Learning Pipeline?

  13. AutoML vs. Traditional ML: Automating the Machine Learning ..., 访问时间为 三月 27, 2025, https://medium.com/@hassaanidrees7/automl-vs-traditional-ml-automating-the-machine-learning-pipeline-43576c09298b

  14. End to End image Classification in Tensorflow | by parth ramanuj - Medium, 访问时间为 三月 27, 2025, https://medium.com/@parthramanuj64/end-to-end-image-classification-in-tensorflow-33861592eacc

  15. End-to-End Machine Learning Pipeline with TensorFlow | by Rithvik K | DevOps.dev, 访问时间为 三月 27, 2025, https://blog.devops.dev/building-an-end-to-end-machine-learning-pipeline-with-tensorflow-d2316d719370

  16. Training & evaluation with the built-in methods | TensorFlow Core, 访问时间为 三月 27, 2025, https://www.tensorflow.org/guide/keras/training_with_built_in_methods

  17. From Training to Prediction: TensorFlow Models for Decision Making | CodeSignal Learn, 访问时间为 三月 27, 2025, Loading...

  18. End-to-End MLOps Pipeline with TensorFlow, Azure Machine Learning, GitHub Actions, Bicep | by Amine Charot, 访问时间为 三月 27, 2025, https://charotamine.medium.com/end-to-end-mlops-pipeline-with-tensorflow-azure-machine-learning-github-actions-bicep-4febc83f9fc0

  19. End-to-End Attention-Based Machine Translation Model with Minimum Tensorflow Code, 访问时间为 三月 27, 2025, https://towardsdatascience.com/end-to-end-attention-based-machine-translation-model-with-minimum-tensorflow-code-ae2f08cc8218/

  20. End-to-end Pytorch model in five minutes - Towards Data Science, 访问时间为 三月 27, 2025, https://towardsdatascience.com/end-to-end-pytorch-model-in-five-minutes-a72da7bd4ebb/

  21. A tutorial on building end-to-end Deep Learning models in PyTorch, 访问时间为 三月 27, 2025, A tutorial on building end-to-end Deep Learning models in PyTorch

  22. PyTorch Tutorial: How to Develop Deep Learning Models with Python - MachineLearningMastery.com, 访问时间为 三月 27, 2025, PyTorch Tutorial: How to Develop Deep Learning Models with Python - MachineLearningMastery.com

  23. Creating a Training Loop for PyTorch Models - MachineLearningMastery.com, 访问时间为 三月 27, 2025, Creating a Training Loop for PyTorch Models - MachineLearningMastery.com

  24. Optimizing Model Parameters — PyTorch Tutorials 2.6.0+cu124 documentation, 访问时间为 三月 27, 2025, Optimizing Model Parameters — PyTorch Tutorials 2.6.0+cu124 documentation

  25. End-to-End Workflow with torchtune - PyTorch, 访问时间为 三月 27, 2025, End-to-End Workflow with torchtune — torchtune 0.4 documentation

  26. End-to-End Workflow with torchtune - PyTorch, 访问时间为 三月 27, 2025, End-to-End Workflow with torchtune — torchtune 0.5 documentation

  27. Learning PyTorch with Examples, 访问时间为 三月 27, 2025, Learning PyTorch with Examples — PyTorch Tutorials 2.6.0+cu124 documentation

  28. End-to-End Transformer-Based Models in Textual-Based NLP - MDPI, 访问时间为 三月 27, 2025, https://www.mdpi.com/2673-2688/4/1/4

  29. Natural Language Processing (NLP) [A Complete Guide] - DeepLearning.AI, 访问时间为 三月 27, 2025, Natural Language Processing (NLP) [A Complete Guide]

  30. Deep Learning for NLP - An Overview - Sunscrapers, 访问时间为 三月 27, 2025, Deep Learning for NLP - An Overview | Sunscrapers

  31. Deep Learning Architecture Examples - Addepto, 访问时间为 三月 27, 2025, Deep Learning Architecture Examples - Addepto

  32. 8 Deep Learning Architectures Data Scientists Must Master - ProjectPro, 访问时间为 三月 27, 2025, 8 Deep Learning Architectures Data Scientists Must Master

  33. Building an end-to-end NLP application — A beginner friendly guide - Medium, 访问时间为 三月 27, 2025, https://medium.com/@abinayamahendiran/building-an-end-to-end-nlp-application-an-overview-ef0221c4ab1f

  34. Using transformer models for your own NLP task - building an NLP model End To End by Ana-Maria Istrate | Women in Tech Network, 访问时间为 三月 27, 2025, Using transformer models for your own NLP task - building an NLP model End To End by Ana-Maria Istrate | Women in Tech Network

  35. Top Performing Computer Vision Architectures - Kaggle, 访问时间为 三月 27, 2025, Top Performing Computer Vision Architectures | Kaggle

  36. Computer Vision Tasks (Comprehensive 2025 Guide) - viso.ai, 访问时间为 三月 27, 2025, Computer Vision Tasks (Comprehensive 2025 Guide) - viso.ai

  37. Computer Vision | End-to-End Pipeline CV Project | by Venkatkumar (VK) | Medium, 访问时间为 三月 27, 2025, https://medium.com/@VK_Venkatkumar/computer-vision-end-to-end-pipeline-9b8db84c7cf4

  38. Top 30+ Computer Vision Models For 2025 - Analytics Vidhya, 访问时间为 三月 27, 2025, Top 34 Computer Vision Models For 2025

  39. Autonomous Driving : The Future Is End-to-End AI | by Junjie Tang | Medium, 访问时间为 三月 27, 2025, https://medium.com/@junjie-tang/mastering-the-future-of-autonomous-driving-with-end-to-end-ai-f7ef995fcd5a

  40. Turing Inc. |End-to-End Autonomous Driving, 访问时间为 三月 27, 2025, Turing Inc. |End-to-End Autonomous Driving

  41. Introducing Waymo's Research on an End-to-End Multimodal Model for Autonomous Driving, 访问时间为 三月 27, 2025, https://waymo.com/blog/2024/10/introducing-emma

  42. Basic OpenAI End-to-End Chat Reference Architecture - Azure Architecture Center, 访问时间为 三月 27, 2025, Basic OpenAI End-to-End Chat Reference Architecture - Azure Architecture Center | Microsoft Learn

  43. Baseline OpenAI End-to-End Chat Reference Architecture - Learn Microsoft, 访问时间为 三月 27, 2025, Baseline OpenAI End-to-End Chat Reference Architecture - Azure Architecture Center | Microsoft Learn

  44. Integrating Modular Pipelines with End-to-End Learning: A Hybrid Approach for Robust and Reliable Autonomous Driving Systems - MDPI, 访问时间为 三月 27, 2025, https://www.mdpi.com/1424-8220/24/7/2097

  45. [Discussion] Why should better networks be end-to-end? (Or why not?) : r/MachineLearning, 访问时间为 三月 27, 2025, https://www.reddit.com/r/MachineLearning/comments/16sgxkh/discussion_why_should_better_networks_be_endtoend/

  46. LangGraph: A Step-by-Step Guide to Building an End-to-End Chatbot with Memory Support | by Piyush Kashyap | Medium, 访问时间为 三月 27, 2025, https://medium.com/@piyushkashyap045/langgraph-a-step-by-step-guide-to-building-an-end-to-end-chatbot-with-memory-support-8a1e6677a447

  47. How To Build A Chatbot: End-to-End Guide - Intellectsoft, 访问时间为 三月 27, 2025, How To Build A Chatbot: End-to-End Guide | Intellectsoft

  48. How do Chatbots work? A Guide to the Chatbot Architecture - Maruti Techlabs, 访问时间为 三月 27, 2025, How do Chatbots work? A Guide to the Chatbot Architecture

  49. End-to-end session-based recommendations with PyTorch — Transformers4Rec documentation, 访问时间为 三月 27, 2025, End-to-end session-based recommendations with PyTorch — Transformers4Rec documentation

  50. Training Highly Scalable Deep Recommender Systems on Databricks (Part 1), 访问时间为 三月 27, 2025, Training Highly Scalable Deep Recommender Systems on Databricks (Part 1) | Databricks Blog

  51. Integration Architecture - The Definitive Guide - SAP LeanIX, 访问时间为 三月 27, 2025, Integration Architecture - The Definitive Guide | LeanIX

  52. Enterprise Architecture for End-to-End Product Configuration - Modular Management, 访问时间为 三月 27, 2025, Enterprise Architecture for End-to-End Product Configuration

  53. Understanding Integration Architecture: A Comprehensive Guide - Ardoq, 访问时间为 三月 27, 2025, Understanding Integration Architecture: A Comprehensive Guide | Ardoq

  54. System Integration: Types, Approaches, and Implementation Steps - AltexSoft, 访问时间为 三月 27, 2025, System Integration: Definition, Types, and Approaches

  55. The Benefits and Challenges of Deep Learning - GrowExx, 访问时间为 三月 27, 2025, The Benefits and Challenges of Deep Learning

  56. What are the limitations of deep learning algorithms? - ResearchGate, 访问时间为 三月 27, 2025, https://www.researchgate.net/post/What_are_the_limitations_of_deep_learning_algorithms

  57. Deep learning for healthcare: review, opportunities and challenges - PMC, 访问时间为 三月 27, 2025, Deep learning for healthcare: review, opportunities and challenges - PMC

  58. End-to-End Models for Complex AI Tasks | Capital One, 访问时间为 三月 27, 2025, End-to-End Models for Complex AI Tasks | Capital One

  59. Writing a training loop from scratch | TensorFlow Core, 访问时间为 三月 27, 2025, https://www.tensorflow.org/guide/keras/writing_a_training_loop_from_scratch

  60. Training models | TensorFlow.js, 访问时间为 三月 27, 2025, https://www.tensorflow.org/js/guide/train_models

  61. End to End Machine Learning Pipeline using Tensorflow - YouTube, 访问时间为 三月 27, 2025, https://www.youtube.com/watch?v=wPri78CFSEw

  62. Training the saving deep learning model in Pytorch - Stack Overflow, 访问时间为 三月 27, 2025, https://stackoverflow.com/questions/75151091/training-the-saving-deep-learning-model-in-pytorch

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

WilsonShiiii

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值