在人工智能的浪潮中,大型语言模型(LLMs)已成为推动技术变革的核心引擎。DeepSeek R1、Kimi k1.5和OpenAI o1作为这一领域的先锋代表,以其独特的技术架构和卓越的性能,引领着行业的发展方向。深入剖析这三款模型,不仅能让我们把握LLMs的技术脉搏,更能为未来的技术创新和应用拓展提供有力支撑。
深度拆解技术架构
DeepSeek R1:强化学习驱动的革新之路
DeepSeek R1的核心在于对强化学习(RL)的深度应用,以提升语言模型的推理能力。其前身DeepSeek R1 - Zero大胆创新,摒弃传统依赖监督微调(SFT)的起始步骤,直接在基础模型上开展大规模RL训练。这一过程中,Group Relative Policy Optimization(GRPO)算法功不可没。
GRPO算法通过从旧策略中采样一组输出并估计基线,避免了使用与策略模型规模相当的批评模型,从而大幅降低训练成本。从数学原理上看,其优化目标函数为:
\begin{aligned}
\mathcal{J}{GRPO}(\theta) & = \mathbb{E}\left[q \sim P(Q),{o{i}}{i = 1}^{G} \sim \pi{\theta_{old}}(O|q)\right] \
& \frac{1}{G}\sum_{i = 1}^{G}\left(min\left(\frac{\pi_{\theta}(o_{i}|q)}{\pi_{\theta_{old}}(o_{i}|q)}A_{i}, clip\left(\frac{\pi_{\theta}(o_{i}|q)}{\pi_{\theta_{old}}(o_{i}|q)}, 1 - \varepsilon, 1 + \varepsilon\right)A_{i}\right) - \beta \mathbb{D}{KL}(\pi{\theta} | \pi_{ref})\right)
\end{aligned}
其中,(\mathbb{D}{KL}(\pi{\theta} | \pi_{ref})=\frac{\pi_{ref}(o_{i}|q)}{\pi_{\theta}(o_{i}|q)}-log\frac{\pi_{ref}(o_{i}|q)}{\pi_{\theta}(o_{i}|q)}-1),(\varepsilon)和(\beta)作为超参数,对算法性能和稳定性起着关键调节作用。(A_{i})代表优势,通过一组奖励({r_{1}, r_{2},…, r_{G}})计算得出,公式为:
(A_{i}=\frac{r_{i}-mean({r_{1}, r_{2}, \cdots, r_{G}})}{std({r_{1}, r_{2}, \cdots, r_{G}})})
这种计算方式使模型能更精准地评估不同输出的价值,优化策略。然而,DeepSeek R1 - Zero在实际应用中暴露出可读性差和语言混合等问题。为此,DeepSeek R1引入冷启动数据和多阶段训练策略。训练初期,利用数千条精心设计的长思维链(CoT)数据对DeepSeek V3 - Base模型进行微调,为后续RL训练奠定良好基础。随后,进行推理导向的RL训练,在训练接近收敛时,运用拒绝采样技术创建新的SFT数据,