偏微分方程的物理含义

1.实际问题采用偏微分方程的原因

在实际的工程和物理问题中,所欲分析的物理量(即未知函数)常受到不止一个变量的影响,所以一般多以偏微分方程表示。

2.偏微分方程的物理含义

包含多元未知函数的某些偏导数的方程,统称为偏微分方程。它有两个特点,一是未知函数为一个多元函数(否则,若未知函数只是一个一元函数,就是一个常微分方程!),二是方程中要包含未知函数的某些偏导数(否则,就是一个函数方程!)。这样来定义偏微分方程,其研究的目标和对象就太宽泛了,很难得到深入的结果。其实,偏微分方程这门数学学科的出现和兴起,并不是从偏微分方程的上述广泛的定义出发的,恰恰相反,是源于实践及应用需要的驱动,才使少数一些特殊类型的偏微分方程引起了人们普遍的关注,成了反复深入研究的对象,而对其他种种 “可能” 出现的偏微分方程却根本置之不顾。

自18世纪中叶开始对偏微分方程开展研究以来,人们的兴趣长期集中在下面几种典型的偏微分方程上。

(1) 双曲型方程。其代表是 波动方程

人们在研究波动现象(如声波,电磁波,弹性波…)时,总结出它们的共性,即波的传播过程——波动方程,从而在信息通讯、石油勘探、半导体器件、电子显微镜、激光制导等等领域有着广泛的应用,真正改变了人们的生活。
∂ 2 u ∂ t 2 = a 2 Δ u \frac{\partial^2 u}{\partial t^2}=a^2 \Delta u t22u=a2Δu
其中 u = u ( t , x , y , z ) u=u(t,x,y,z) u=u(t,x,y,z)为以时间变量 t t t 及空间变量 ( x , y , z ) (x,y,z) (x,y,z) 为自变量的未知函数,方程左端为 u u u t t t 的二阶偏导数,右端的 Δ = ∂ 2 ∂ x 2 + ∂ 2 ∂ y 2 + ∂ 2 ∂ z 2 \Delta=\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}+\frac{\partial^2}{\partial z^2} Δ=x22+y22+z22

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值