机器学习中的隐变量/潜变量和隐藏空间/潜在空间
1.什么是隐变量?
在统计学中,隐变量或称潜变量,潜在变量,与观测变量相对,指的是不可观测的随机变量。潜变量可以通过使用数学模型依据观测得的数据被推断出来。用潜在变量解释观测变量的数学模型称为潜变量模型。 有些情况下,潜变量和现实中的一些因素是有关系的。测量这些因素理论上可行,实际上却很困难。这些情况里通常使用“隐变量(hidden variables)”这个词。另外一些情况下,潜变量指的是抽象概念,例如分类、行为、心理状态、数据结构等等。在这些情况下人们用 hypothetical variables 或者 hypothetical constructs 指代潜变量。
使用潜变量的好处之一是潜变量能用来降低数据的维度。大量的观测变量能够被整合起来成为一个潜变量来表示深层次的概念,使得观测数据更容易理解。
1.什么是潜在空间(Latent Space)?
如果必须用一句话来描述潜在空间,它仅仅意味着压缩数据的表示。
上图是手写数字(0-9)的大数据集。同一个数字3的手写图像与不同数字的图像7两者是最相似的。我们能否训练一种算法来识别这些相似性呢?如何做到呢?
如果你已经训练了一个模型来对数字进行分类,那么这个模型已经学到了图像之间的 “结构相似性”。事实上,这就是模型为什么能够对数字进行分类–通过学习每个数字的特征。
但模型学到每个数字的特征这个过程对你