注:以本人的电脑配置进行搭建,本人电脑配置如下:
CPU | R7 3700x(AMD) |
GPU(显卡) | RTX 3070 8g(NVIDIA) |
内存 | DDR4(16g) |
外存 | 1TB SSD | 300GB HDD |
以Python3.9.6,Pycharm2024.1为基础安装显卡驱动,Cuda121和cuDNN,Pytorch2.1.1。
目录
一、显卡驱动安装
1.NVIDIA显卡驱动下载网址
NVIDIA GeForce 驱动程序 - N 卡驱动 | NVIDIA
2.下载安装显卡驱动
注:显卡驱动不建议选择最新的,选比较新(三个月以内即可)的即可。
选择自己电脑显卡的型号搜索驱动,下载成功后直接安装,安装过程中全选默认选项直到安装成功。
二、Cuda和cuDNN安装
Pytorch版本 | 可选的Cuda版本 | 支持的Python版本 |
2.2.x | cu118、cu121 | cp38、cp39、cp310、cp311 |
2.1.x | cu118、cu121 | cp38、cp39、cp310、cp311 |
2.0.x | cu117、cu118 | cp38、cp39、cp310、cp311 |
1.13.x | cu116、cu117 | cp37、cp38、cp39、cp310 |
1.12.x | cu113、cu116 | cp37、cp38、cp39、cp310 |
1.11.x | cu113、cu115 | cp37、cp38、cp39、cp310 |
1.10.x | cu102、cu111、cu113 | cp36、cp37、cp38、cp39 |
1.9.x | cu102、cu111 | cp36、cp37、cp38、cp39 |
1.8.x | cu101、cu111 | cp36、cp37、cp38、cp39 |
1.7.x | cu101、cu110 | cp36、cp37、cp38 |
1.6.x | cu101 | cp36、cp37、cp38 |
1.5.x | cu92、cu101 | cp35、cp36、cp37、cp38 |
注:本文安装的cu121版本
1.Cuda下载安装
Cuda下载网址:CUDA Toolkit Archive | NVIDIA Developer
选择需要下载的Cuda版本后,就根据电脑配选择对应的选项下载。下载好后点击安装,所有选项选择默认选项,直接安装成功。
安装结束后,在Windows底部搜索栏输入CMD打开命令提示符,在命令提示符里面输入nvcc -V即可以看到安装的Cuda版本。
2.cuDNN下载安装
注:cuDNN对于深度学习是必要的,因为它提供了高效的算法和优化技巧,可以极大地提升深度学习模型的训练和推理速度。
cuDNN下载网址:cuDNN 历史版本 | NVIDIA 开发者
根据下载的Cuda版本下载对应的cuDNN
下载完成后解压压缩包,打开解压后的文件夹如下图的左侧,同时打开C盘中存放Cuda的文件夹C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.1。打开后将cuDNN文件夹中bin、include、lib的文件复制到Cuda文件夹中对应名称的文件夹中。
三、Pytorch下载安装
1.在线安装
Pytorch下载网址:Previous PyTorch Versions | PyTorch
Pycharm的终端或者打开Windows的命令提示符,用pip安装Pytorch可以先更新一下pip版本:python.exe -m pip install --upgrade pip
本人安装的是torch==2.1.1 torchvision==0.16.1 torchaudio==2.1.1对应的安装命令为
pip install torch==2.1.1 torchvision==0.16.1 torchaudio==2.1.1 --index-url https://download.pytorch.org/whl/cu121
但这种安装方式容易出现ReadTimeout错误,主要原因是网速问题。
如下在命令中可以加上-default-timeout=100,即可解决。
pip --default-timeout=100 install torch==2.1.1 torchvision==0.16.1 torchaudio==2.1.1 --index-url https://download.pytorch.org/whl/cu121
2.离线安装
若在线安装因网络原因不能安装成功可以尝试离线安装。
离线下载网址:
https://download.pytorch.org/whl/torch_stable.html
找到对应的版本直接下载,或者使用迅雷下载。
然后打开windows的命令提示符或者PyCharm的终端,进入到存放的离线包文件夹下。
再依次安装这三个离线包,安装命令为pip install *****.whl,依次安装三个包即可。
如安装上图中的torch,命令如下
3.代码测试
通过以下代码测试环境是否安装成功
import torch print(torch.cuda.is_available())