TVM部署TensorFlow模型

本文介绍了如何使用TVM编译和部署TensorFlow模型,包括环境配置、模型导入、图像解码、Relay转换、编译执行和结果处理。在实践中遇到了TensorFlow版本问题,通过回退版本解决。完整教程和代码可在TVM官方文档中找到。
摘要由CSDN通过智能技术生成

本文是对TVM官方关于如何使用TVM编译TensorFlow模型文档的翻译整理,并记录了实现时遇到的小坑。

TVM部署TensorFlow模型

本文介绍如何使用TVM部署TensorFlow模型。
在开始之前,首先需要安装TensorFlow的Python包。

Python及TensorFlow环境

以下例程需要Python3.5以上的环境才能运行,请使用3.5以上Python的版本。
我在使用Python3.6.5与TensorFlow1.14.0运行例程时遇到如下报错:

Traceback (most recent call last):
  File "from_tensorflow.py", line 129, in <module>
    shape=shape_dict)
  File "/home/$USER/local/tvm/python/tvm/relay/frontend/tensorflow.py", line 2413, in from_tensorflow
    mod, params = g.from_tensorflow(graph, layout, shape, outputs)
  File "/home/$USER/local/tvm/python/tvm/relay/frontend/tensorflow.py", line 2058, in from_tensorflow
    op = self._convert_operator(node.op, inputs, attr, graph)
  File "/home/$USER/local/tvm/python/tvm/relay/frontend/tensorflow.py", line 2376, in _convert_operator
    sym = convert_map[op_name](inputs, attrs, self._params)
  File "/home/$USER/local/tvm/python/tvm/relay/frontend/tensorflow.py", line 562, in _impl
    extras={'method': "BILINEAR"})(inputs, attr)
  File "/home/$USER/local/tvm/python/tvm/relay/frontend/tensorflow.py", line 155, in __call__
    return _get_relay_op(op_name)(*inputs, **new_attrs)
TypeError: resize() got an unexpected keyword argument 'half_pixel_centers'

回退TensorFlow版本至1.12.0后报错消失。TVM社区关于本问题的探讨:https://discuss.tvm.ai/t/typeerror-when-running-the-from-tensorflow-example/3046

关于TensorFlow的安装请参考https://www.tensorflow.org/install
此处通过pip进行安装即可:

pip3 install TensorFlow==1.12.0
# 导入 tvm, relay  
import tvm  
from tvm import relay  

# 导入 os and numpy  
import numpy as np  
import os.path  

# 导入 Tensorflow imports  
import tensorflow as tf  

# Tensorflow 效用函数
import tvm.relay.testing.tf as tf_testing  

# 相关文件的在线地址(此处使用了dmlc在GitHub上的数据)  
repo_base = 'https://github.com/dmlc/web-data/raw/master/tensorflow/models/InceptionV1/'  

# 测试用图  
img_name = 'elephant-299.jpg'  
image_url = os.path.join(repo_base, img_name)  

教程

有关TensorFlow的各种模型的更多详细信息,请参阅 docs/frontend/tensorflow.md 。

model_name = 'classify_image_graph_def-with_shapes.pb'  
model_url = os.path.join(repo_base, model_name)  

# 图像标签  
map_proto = 'imagenet_2012_challenge_label_map_proto.pbtxt'  
map_proto_url = os.path.join(repo_base, map_proto)  

# 可读的图像标签  
label_map = 'imagenet_synset_to_human_label_map.txt'  
label_map_url = os.path.join(repo_base, label_map)  

# 目标设置  
# 如果使用cuda,可以使用以下推荐配置。  
#target = 'cuda'  
#target_host = 'llvm'  
#layout = "NCHW"  
#ctx = tvm.gpu(0)  
target = 'llvm'  
target_host = 'llvm'  
layout = None  
ctx = tvm.cpu(0)  

下载所需文件

下列程序将下载上面所列的所需文件

from tvm.contrib.download import download_testdata  

img_path = download_testdata(image_url, img_name, module='data')  
model_path = download_testdata(model_url, model_name, module=['tf', 'InceptionV1'])  
map_proto_path = download_testdata(map_proto_url, map_proto, module='data')  
label_path = download_testdata(label_map_url, label_map, module='data')  

导入模型

从protobuf文件创建TensorFlow图定义

with tf.gfile.FastGFile(model_path, 'rb') as f:  
    graph_def = tf.GraphDef()  
    graph_def.ParseFromString(f.read())  
    graph = tf.import_graph_def(graph_def, name='')  
    # 调用效用函数,将图定义导入默认图。  
    graph_def = tf_testing.ProcessGraphDefParam(graph_def)  
    # 向图增加shape。  
    with tf.Session() as sess:  
        graph_def = tf_testing.AddShapesToGraphDef(sess, 'softmax')  

图像解码

官方注解

TensorFlow前端导入不支持JpegDecode等处理操作,所以我们绕过JpegDecode(只返回源节点)。因此,我们需要向TVM提供已解码的帧。

from PIL import Image  
image = Image.open(img_path).resize((299, 299))  

x =
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值