《数据分析与挖掘 第五章 挖掘建模》

1.分类与预测

逻辑回归 自动建模

#逻辑回归 自动建模
import pandas as pd


filename = 'bankloan.xls'
data = pd.read_excel(filename)
x = data.iloc[:,:8].values
y = data.iloc[:,8].values

from sklearn.linear_model import LogisticRegression as LR
from sklearn.linear_model import RandomizedLogisticRegression as RLR 
rlr = RLR() #建立随机逻辑回归模型
rlr.fit(x, y) #训练模型
rlr.get_support() #获取特征筛选结果也可以通过.scores_方法获取各个特征的分数
#rlr.scores_
print(u'通过随机逻辑回归模型筛选特征结束。')
print(u'有效特征为%s' % ','.join(data.iloc[:,:8].columns[rlr.get_support()]))
#将索引值中间加逗号隔开
x = data[data.iloc[:,:8].columns[rlr.get_support()]].as_matrix() #筛选好特征

lr = LR() #建立逻辑柜模型
lr.fit(x, y) #筛选后的特征数据来训练模型
print(u'逻辑回归训练模型结束。')
print(u'模型的平均正确率为%s' % lr.score(x, y)) #给出模型的正确率,本例为81.4%

通过随机逻辑回归模型筛选特征结束。
有效特征为工龄,地址,负债率,信用卡负债
逻辑回归训练模型结束。
模型的平均正确率为0.8142857142857143
在这里插入图片描述
.as_matrix()将会被.values代替

ID3决策树算法预测销量高低

#使用ID3决策树算法预测销量高低
import pandas as pd

#参数初始化
inputfile = 'sales_data.xls'
data = pd.read_excel(inputfile, index_col = '序号') #导入数据

#数据是类别标签,将他转化为数据
#用1来表示‘好’,‘是’,‘高’这三个属性,用-1表示‘坏’,‘否’,‘低’
data[data == '好'] = 1
data[data == '是'] = 1
data[data == '高'] = 1
data[data != 1] = -1
x = data.iloc[:,:3].as_matrix().astype(int)#
y = data.iloc[:,3].as_matrix().astype(int)

from sklearn.tree import DecisionTreeClassifier as DTC
dtc = DTC(criterion='entropy') #建立决策树模型
dtc.fit(x, y) #训练模型

#导入相关函数,可视化决策树
#导出的是一个dot文件,需要安装Graphviz才能将它转换为pdf或png等格式
from sklearn.tree import export_graphviz
x = pd.DataFrame(x)
from sklearn.externals.six import StringIO
x = pd.DataFrame(x)
with open("tree.dot", 'w') as f:
  f = export_graphviz(dtc, feature_names = x.columns, out_file = f)

人工神经网络算法预测销量高低

2.聚类分析

k-Means聚类算法:

import pandas as pd

#参数初始化
inputfile = 'consumption_data.xls' #销量及其他属性数据
outputfile = 'data_type.xls' #保存结果的文件名
k = 3 #聚类的类别
iteration = 500 #聚类最大循环次数
data = pd.read_excel(inputfile, index_col = 'Id') #读取数据
data_zs = 1.0*(data - data.mean())/data.std() #数据标准化
#print(data_zs.head())

from sklearn.cluster import KMeans
model = KMeans(n_clusters = k, n_jobs = 4, max_iter = iteration) #分为k类,并发数4
model.fit(data_zs) #开始聚类

#简单打印结果
r1 = pd.Series(model.labels_).value_counts() #统计各个类别的数目
r2 = pd.DataFrame(model.cluster_centers_) #找出聚类中心
print(r1)
print(r2)
r = pd.concat([r2, r1], axis = 1) #横向连接(0是纵向),得到聚类中心对应的类别下的数目
r.columns = list(data.columns) + [u'类别数目'] #重命名表头
print(r)

#详细输出原始数据及其类别
r = pd.concat([data, pd.Series(model.labels_, index = data.index)], axis = 1)  #详细输出每个样本对应的类别
r.columns = list(data.columns) + [u'聚类类别'] #重命名表头
r.to_excel(outputfile) #保存结果

在这里插入图片描述

def density_plot(data): #自定义作图函数
  import matplotlib.pyplot as plt
  plt.rcParams['font.sans-serif'] = ['SimHei'] #用来正常显示中文标签
  plt.rcParams['axes.unicode_minus'] = False #用来正常显示负号
  p = data.plot(kind='kde', linewidth = 2, subplots = True, sharex = False)
  [p[i].set_ylabel(u'密度') for i in range(k)]
  plt.legend() #这里并没有对图例进行什么处理,就是默认的
  #Matplotlib 的 Legend 图例就是为了帮助我们展示每个数据对应的图像名称,更好的让读者认识到你的数据结构。
  return plt

pic_output = 'pd_' #概率密度图文件名前缀
for i in range(k):
  density_plot(data[r[u'聚类类别']==i]).savefig(u'%s%s.png' %(pic_output, i))#保存为指定名字

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
用Tsne惊醒数据降维并展示聚类结果:

from sklearn.manifold import TSNE

tsne = TSNE()
tsne.fit_transform(data_zs) #进行数据降维
tsne = pd.DataFrame(tsne.embedding_, index = data_zs.index) #转换数据格式

import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False #用来正常显示负号

#不同类别用不同颜色和样式绘图
d = tsne[r[u'聚类类别'] == 0]
plt.plot(d[0], d[1], 'r.')
d = tsne[r[u'聚类类别'] == 1]
plt.plot(d[0], d[1], 'go')
d = tsne[r[u'聚类类别'] == 2]
plt.plot(d[0], d[1], 'b*')
plt.show()

3.关联规则

apriori算法

#-*- coding: utf-8 -*-
from __future__ import print_function
import pandas as pd

#自定义连接函数,用于实现L_{k-1}到C_k的连接
def connect_string(x, ms):
  x = list(map(lambda i:sorted(i.split(ms)), x))
  l = len(x[0])
  r = []
  for i in range(len(x)):
    for j in range(i,len(x)):
      if x[i][:l-1] == x[j][:l-1] and x[i][l-1] != x[j][l-1]:
        r.append(x[i][:l-1]+sorted([x[j][l-1],x[i][l-1]]))
  return r

#寻找关联规则的函数
def find_rule(d, support, confidence, ms = u'--'):
  result = pd.DataFrame(index=['support', 'confidence']) #定义输出结果
  
  support_series = 1.0*d.sum()/len(d) #支持度序列
  column = list(support_series[support_series > support].index) #初步根据支持度筛选
  k = 0
  
  while len(column) > 1:
    k = k+1
    print(u'\n正在进行第%s次搜索...' %k)
    column = connect_string(column, ms)
    print(u'数目:%s...' %len(column))
    sf = lambda i: d[i].prod(axis=1, numeric_only = True) #新一批支持度的计算函数
    
    #创建连接数据,这一步耗时、耗内存最严重。当数据集较大时,可以考虑并行运算优化。
    d_2 = pd.DataFrame(list(map(sf,column)), index = [ms.join(i) for i in column]).T
    
    support_series_2 = 1.0*d_2[[ms.join(i) for i in column]].sum()/len(d) #计算连接后的支持度
    column = list(support_series_2[support_series_2 > support].index) #新一轮支持度筛选
    support_series = support_series.append(support_series_2)
    column2 = []
    
    for i in column: #遍历可能的推理,如{A,B,C}究竟是A+B-->C还是B+C-->A还是C+A-->B?
      i = i.split(ms)
      for j in range(len(i)):
        column2.append(i[:j]+i[j+1:]+i[j:j+1])
    
    cofidence_series = pd.Series(index=[ms.join(i) for i in column2]) #定义置信度序列
 
    for i in column2: #计算置信度序列
      cofidence_series[ms.join(i)] = support_series[ms.join(sorted(i))]/support_series[ms.join(i[:len(i)-1])]
    
    for i in cofidence_series[cofidence_series > confidence].index: #置信度筛选
      result[i] = 0.0
      result[i]['confidence'] = cofidence_series[i]
      result[i]['support'] = support_series[ms.join(sorted(i.split(ms)))]
  
  result = result.T.sort_values(['confidence','support'], ascending = False) #结果整理,输出
  print(u'\n结果为:')
  print(result)
  
  return result

result = result.T.sort([‘confidence’,‘support’], ascending = False)
报以下错误:
AttributeError: ‘DataFrame’ object has no attribute ‘sort’

解决方式:

sort_values()即可解决

apriori算法挖掘菜品订单关联规则

from __future__ import print_function
import pandas as pd
from apriori import *


inputfile = 'menu_orders.xls'
outputfile = 'apriori_rules.xls' #结果文件
data = pd.read_excel(inputfile, header = None)

print(u'\n转换原始数据至0-1矩阵...')
ct = lambda x : pd.Series(1, index = x[pd.notnull(x)]) #转换0-1矩阵的过渡函数
b = map(ct, data.values) #用map方式执行
data = pd.DataFrame(list(b)).fillna(0) #实现矩阵转换,空值用0填充
print(u'\n转换完毕。')
del b #删除中间变量b,节省内存

support = 0.2 #最小支持度
confidence = 0.5 #最小置信度
ms = '---' #连接符,默认'--',用来区分不同元素,如A--B。需要保证原始表格中不含有该字符

find_rule(data, support, confidence, ms).to_excel(outputfile) #保存结果

在这里插入图片描述
结果解释为:e和a一起点的概率是0.3,点了e再点a的概率是1

4.时序模式

加粗样式

#-*- coding: utf-8 -*-
#arima时序模型

import pandas as pd

#参数初始化
discfile = 'arima_data.xls'
forecastnum = 5

#读取数据,指定日期列为指标,Pandas自动将“日期”列识别为Datetime格式
data = pd.read_excel(discfile, index_col = u'日期')

#时序图
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False #用来正常显示负号
data.plot()
plt.show()

在这里插入图片描述

#自相关图
from statsmodels.graphics.tsaplots import plot_acf
plot_acf(data).show()

在这里插入图片描述

#平稳性检测
from statsmodels.tsa.stattools import adfuller as ADF
print(u'原始序列的ADF检验结果为:', ADF(data[u'销量']))
#返回值依次为adf、pvalue、usedlag、nobs、critical values、icbest、regresults、resstore

原始序列的ADF检验结果为: (1.813771015094526, 0.9983759421514264, 10, 26, {‘1%’: -3.7112123008648155, ‘5%’: -2.981246804733728, ‘10%’: -2.6300945562130176}, 299.4698986602418)

#差分后的结果
D_data = data.diff().dropna()
D_data.columns = [u'销量差分']
D_data.plot() #时序图
plt.show()

在这里插入图片描述

plot_acf(D_data).show() #自相关图
from statsmodels.graphics.tsaplots import plot_pacf
plot_pacf(D_data).show() #偏自相关图
print(u'差分序列的ADF检验结果为:', ADF(D_data[u'销量差分'])) #平稳性检测

在这里插入图片描述
在这里插入图片描述

#白噪声检验
from statsmodels.stats.diagnostic import acorr_ljungbox
print(u'差分序列的白噪声检验结果为:', acorr_ljungbox(D_data, lags=1)) #返回统计量和p值

差分序列的白噪声检验结果为: (array([11.30402222]), array([0.00077339]))

from statsmodels.tsa.arima_model import ARIMA

data[u'销量'] = data[u'销量'].astype(float)

#定阶
pmax = int(len(D_data)/10) #一般阶数不超过length/10
qmax = int(len(D_data)/10) #一般阶数不超过length/10
bic_matrix = [] #bic矩阵
for p in range(pmax+1):
  tmp = []
  for q in range(qmax+1):
    try: #存在部分报错,所以用try来跳过报错。
      tmp.append(ARIMA(data, (p,1,q)).fit().bic)
    except:
      tmp.append(None)
  bic_matrix.append(tmp)

bic_matrix = pd.DataFrame(bic_matrix) #从中可以找出最小值

p,q = bic_matrix.stack().idxmin() #先用stack展平,然后用idxmin找出最小值位置。
print(u'BIC最小的p值和q值为:%s、%s' %(p,q)) 
model = ARIMA(data, (p,1,q)).fit() #建立ARIMA(0, 1, 1)模型
model.summary2() #给出一份模型报告
model.forecast(5) #作为期5天的预测,返回预测结果、标准误差、置信区间。

BIC最小的p值和q值为:0、1

5.离群点检测

import numpy as np
import pandas as pd

#参数初始化
inputfile = 'consumption_data.xls' #销量及其他属性数据
k = 3 #聚类的类别
threshold = 5 #离散点阈值
iteration = 10 #聚类最大循环次数
data = pd.read_excel(inputfile, index_col = 'Id') #读取数据
data_zs = 1.0*(data - data.mean())/data.std() #数据标准化

from sklearn.cluster import KMeans
model = KMeans(n_clusters = k, n_jobs = 4, max_iter = iteration) #分为k类,并发数4
model.fit(data_zs) #开始聚类

#标准化数据及其类别
r = pd.concat([data_zs, pd.Series(model.labels_, index = data.index)], axis = 1)  #每个样本对应的类别
r.columns = list(data.columns) + [u'聚类类别'] #重命名表头

在这里插入图片描述
r就是分好类的数据

norm = []
for i in range(k): #逐一处理
  norm_tmp = r[['R', 'F', 'M']][r[u'聚类类别'] == i]-model.cluster_centers_[i]
  norm_tmp = norm_tmp.apply(np.linalg.norm, axis = 1) #求出绝对距离
  norm.append(norm_tmp/norm_tmp.median()) #求相对距离并添加

norm = pd.concat(norm) #合并

import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False #用来正常显示负号
norm[norm <= threshold].plot(style = 'go') #正常点

discrete_points = norm[norm > threshold] #离群点
discrete_points.plot(style = 'ro')

for i in range(len(discrete_points)): #离群点做标记
  id = discrete_points.index[i]
  n = discrete_points.iloc[i]
  plt.annotate('(%s, %0.2f)'%(id, n), xy = (id, n), xytext = (id, n))

plt.xlabel(u'编号')
plt.ylabel(u'相对距离')
plt.show()
  • 3
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值