《数学分析八讲》(1)-连续统理论

本文从《数学分析八讲》引入,探讨了连续统理论的起源,重点介绍了实数的构造,尤其是无理数的建立,以及连续统的连续性和稠密性。通过戴德金分割理论构造实数集合,并讨论了实数的排序、和等运算,为进一步理解数学分析奠定了基础。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

《数学分析八讲》是俄罗斯数学家辛钦(辛钦大数定律的辛钦)的一本书。书中第一段话可以起到提纲挈领的作用:

我们必须毫不含糊地要求这个定义有完全的、无可指责的明确性,其中的每一个字都不应有引起一点怀疑的阴影。在此,极小的一点歧义都可能危及所构筑的庄严的大厦。这个大厦就是科学,它就是以此概念为基础建造起来的,而歧义会使得这座大厦不完善,需要从根本上重建。

第一讲的内容是"连续统"。

"连续统"问题的产生

最重要、最首要的数学分析概念-函数关系,其定义:如果对于变量 x x x的每一个值,变量 y y y都有唯一确定的值与之对应,那么 y y y称为 x x x的函数。
其中"每一个值"是什么意思?由此引出了实数的集合,即(线性)连续统。

实数

研究连续统首先应该研究实数。
1.整数
2.整数的比值-分数
1和2的集合就是全部有理数的集合。有理数(ratio nal)原意是为可比数。
3.无理数-不能由分数表示,如某些整数的平方根。

结合以上三点得出一个定义:
形如方程 P ( x ) = 0 P(x)=0 P(x)=0的所有实根为代数数。有理数即是 q x − p = 0 qx-p=0 qxp=0的根。
注意,代数数并不是全体实数,对实数域的构造还没有完成。问题即"极限"这一分析运算,代数数序列的极限应该仍是代数数,否认极限的存在会导致如下问题:

取一个半径为1的圆,作出其内接正多边形,无限地增加其边数,则多边形的周长应该由代数数表示。这个代数数序列的极限显然就是圆的周长。否认这个极限是实数,即否认圆周长是实数。

圆周长不在代数数中(缺证明).至此,必须承认只有代数数是不够的,必须再给它添加新的实数:
所有非代数数的实数称为“超越数”。
圆周率就是一个超越数,自然数底e也是一个超越数。
总结上述过程:实数分为代数数和超越数。但超越数的定义仍是模糊不清的。

无理数的构造

构造原则:把所有有理数的集合作为最初的已知依据,用统一的构造原则得到所有的实数集合。这其中最重要的思想就是极限,极限过程在构造中起首要、主导作用。
采用“戴德金”的构造理论,多数教材都是用这一构造理论。

1

R R R表示有理数集合。则在任意两个有理数 r 1 , r 2 r_1,r_2 r1,r2之间总能找到第3个有理数.例如 r 1 + r 2 2 \frac{r_1+r_2}{2} 2r1+r2. 迭代一下,即得:两个有理数之间有无穷多个有理数。

2

考虑2的平方根。可以证明任何有理数的平方都不可能等于2.这表明:对于任意有理数 r r r,均有 r 2 &gt; 2 r^2&gt;2 r2>2 r 2 &lt; 2 r^2&lt;2 r2<2.
此处只考虑正有理数,将 r 1 2 &lt; 2 r_1^2&lt;2 r12<2的归于A类,将

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值