前言
《数学分析八讲》是俄罗斯数学家辛钦(辛钦大数定律的辛钦)的一本书。书中第一段话可以起到提纲挈领的作用:
我们必须毫不含糊地要求这个定义有完全的、无可指责的明确性,其中的每一个字都不应有引起一点怀疑的阴影。在此,极小的一点歧义都可能危及所构筑的庄严的大厦。这个大厦就是科学,它就是以此概念为基础建造起来的,而歧义会使得这座大厦不完善,需要从根本上重建。
第一讲的内容是"连续统"。
"连续统"问题的产生
最重要、最首要的数学分析概念-函数关系,其定义:如果对于变量 x x x的每一个值,变量 y y y都有唯一确定的值与之对应,那么 y y y称为 x x x的函数。
其中"每一个值"是什么意思?由此引出了实数的集合,即(线性)连续统。
实数
研究连续统首先应该研究实数。
1.整数
2.整数的比值-分数
1和2的集合就是全部有理数的集合。有理数(ratio nal)原意是为可比数。
3.无理数-不能由分数表示,如某些整数的平方根。
结合以上三点得出一个定义:
形如方程 P ( x ) = 0 P(x)=0 P(x)=0的所有实根为代数数。有理数即是 q x − p = 0 qx-p=0 qx−p=0的根。
注意,代数数并不是全体实数,对实数域的构造还没有完成。问题即"极限"这一分析运算,代数数序列的极限应该仍是代数数,否认极限的存在会导致如下问题:
取一个半径为1的圆,作出其内接正多边形,无限地增加其边数,则多边形的周长应该由代数数表示。这个代数数序列的极限显然就是圆的周长。否认这个极限是实数,即否认圆周长是实数。
圆周长不在代数数中(缺证明).至此,必须承认只有代数数是不够的,必须再给它添加新的实数:
所有非代数数的实数称为“超越数”。
圆周率就是一个超越数,自然数底e也是一个超越数。
总结上述过程:实数分为代数数和超越数。但超越数的定义仍是模糊不清的。
无理数的构造
构造原则:把所有有理数的集合作为最初的已知依据,用统一的构造原则得到所有的实数集合。这其中最重要的思想就是极限,极限过程在构造中起首要、主导作用。
采用“戴德金”的构造理论,多数教材都是用这一构造理论。
1
以 R R R表示有理数集合。则在任意两个有理数 r 1 , r 2 r_1,r_2 r1,r2之间总能找到第3个有理数.例如 r 1 + r 2 2 \frac{r_1+r_2}{2} 2r1+r2. 迭代一下,即得:两个有理数之间有无穷多个有理数。
2
考虑2的平方根。可以证明任何有理数的平方都不可能等于2.这表明:对于任意有理数 r r r,均有 r 2 > 2 r^2>2 r2>2或 r 2 < 2 r^2<2 r2<2.
此处只考虑正有理数,将 r 1 2 < 2 r_1^2<2 r12<2的归于A类,将