概率导论(基础部分笔记)

心得

这部分内容是概率论的基础理论,可视为数学部分。从学到后面的感觉来看,重要的是正确认识这些概率的基本理论。

1.概率模型

概率模型是对不确定现象的数学描述。组成部分:样本空间,概率率。概率有时候像物理。

样本空间

样本空间 Ω \Omega Ω:一个试验的所有可能结果的集合。
注意:例如在掷骰子时,不能把“1或2”和“1或3”同时作为一个试验结果(样本空间的元素)。在确定样本空间的时候,不同的试验结果必须是相互排斥的,即试验过程中只可能产生唯一的一个结果。
序贯模型:方便研究概率问题的模型工具,关系图(它不是一种概率律模型)。

概率律

概率律即概率公理:它给每一个事件 A A A确定一个数 P ( A ) P(A) P(A),满足下面的3条公理

  • 非负性: P ( A ) ≥ 0 P(A) \geq 0 P(A)0
  • 可加性:设 A 、 B A、B AB是不相容事件: A ∩ B = ∅ A\cap B=\emptyset AB= ,则: P ( A ∩ B ) = P ( A ) + P ( B ) P(A\cap B)=P(A)+P(B) P(AB)=P(A)+P(B).结论可以推广到多个事件的情况。
  • 归一化: P ( Ω ) = 1 P(\Omega)=1 P(Ω)=1,整个样本空间是必然事件。

疑问:以上三条公理并似乎并不能把“概率”与我们对概率的直观感受联系在一起。例如定义掷均匀硬币,朝上的概率为 1 / 3 1/3 1/3,朝下 2 / 3 2/3 2/3.这个概率率是符合概率公理的,但它不符合现实的规律,问题是数学不需要与现实规律相符合。概率律只需要对概率公理负责,大概这就是概率悖论非常多的原因。

概率率模型-离散模型

设样本空间由有限个可能的结果组成,则使用离散模型构造概率律,另外的一种是连续模型。
由3条公理可以证明一些概率率性质,例如:
P ( A ∪ B ) = P ( A ) + P ( B ) − P ( A ∩ B ) P ( A ∪ B ) = P ( A ∪ ( A c ∩ B ) ) = P ( A ) + P ( A c ∩ B ) P ( B ) = P ( B ∩ A ) + P ( B ∩ A c ) P(A\cup B)=P(A)+P(B)-P(A\cap B)\\ P(A\cup B)=P(A\cup (A^{ c }\cap B))=P(A)+P(A^{ c }\cap B)\\ P(B)=P(B\cap A)+P(B\cap { A }^{ c }) P(AB)=P(A)+P(B)P(AB)P(AB)=P(A(AcB))=P(A)+P(AcB)P(B)=P(BA)+P(BAc)
概率分析的步骤:
1.在一个适当的样本空间中给出概率律。要求满足概率的3条公理。因此甚至可以建立明显违反现实直觉的模型,只因该模型便于计算。
2.在概率模型下进行严格的逻辑推导。

对同一个问题,在步骤1选择不同的模型,计算结果可能不同。如贝特朗悖论(样本空间不同)。(我一向不喜欢数学试卷上的文字应用题,歧义不少,语义不明更是常见现象。)

古典概型

设样本空间由 n n n个等可能的试验结果组成,则基本事件A的概率为
P ( A ) = 1 n P(A)=\frac {1}{n} P(A)=n1

这是一种模型,可理解为公理,反正我从数学上讲不出道理。

条件概率

给定事件 B B B已发生的条件下,事件A发生的概率
P ( A ∣ B ) = P ( A ∩ B ) P ( B ) P(A|B)=\frac {P(A \cap B)}{P(B)} P(AB)=P(B)P(AB)
注意条件概率 P ( _ ∣ B ) P(\_ |B) P(_B)也是一个概率律,事件B即是必然事件或者理解为样本空间。上面这个公式不依赖于概率模型,而是条件概率的定义。如:
P ( A ∪ C ∣ B ) = P ( A ∣ B ) + P ( C ∣ B ) − P ( A ∩ C ∣ B ) P(A\cup C|B)=P(A|B)+P(C|B)-P(A\cap C|B) P(ACB)=P(AB)+P(CB)P(ACB)
P ( A ∩ B ) = P ( A ) P ( B ∣ A ) = P ( B ) P ( A ∣ B ) P(A\cap B)=P(A)P(B|A)=P(B)P(A|B) P(AB)=P(A)P(BA)=P(B)P(AB)

经典例子:三门问题 A A A:第一门有奖品, B B B:第二门有奖品, C C C:第三门有奖品。
假设直接选择第一门(把这当作事实,不属于概率范围),打开一扇无奖品的第二门(把这个当作已知条件,设为事件E)以后:
P ( E ) = P ( E A ) + P ( E B ) + P ( E C ) = 1 / 2 P(E)=P(EA)+P(EB)+P(EC)=1/2 P(E)=P(EA)+P(EB)+P(EC)=1/2
P ( A E ) = 1 / 3 ∗ 1 / 2 = 1 / 6 , P ( B E ) = 0 , P ( C E ) = 1 / 3 P(AE)=1/3*1/2=1/6,P(BE)=0,P(CE)=1/3 P(AE)=1/31/2=1/6,P(BE)=0,P(CE)=1/3
P ( A ∣ E ) = P ( A E ) P ( E ) = 1 / 6 1 / 2 = 1 3 P ( B ∣ E ) = 0 P(A|E)=\frac { P(AE) }{ P(E) } =\frac { 1/6}{ 1/2 } =\frac { 1 }{ 3 } \\ P(B|E)=0 P(AE)=P(E)P(AE)=1/21/6=31P(BE)=0.
P ( C ∣ E ) = P ( C E ) P ( E ) = 1 / 3 1 / 2 = 2 3 P(C|E)=\frac { P(CE) }{ P(E) } =\frac { 1/3}{ 1/2 } =\frac { 2 }{ 3 } P(CE)=P(E)P(CE)=1/21/3=32
所以换一门才是更优的选择。

全概率定理和贝叶斯准则

全概率定理:设 A 1 , A 2 , . . . , A n A_1,A_2,...,A_n A1,A2,...,An是样本空间的一个分割( A 1 , A 2 , . . . , A n A_1,A_2,...,A_n A1,A2,...,An互不相容且必定有一个发生), P ( A i ) > 0 P(A_i)>0 P(Ai)>0,则:
P ( B ) = P ( A 1 ∩ B ) + P ( A 2 ∩ B ) + . . . + P ( A n ∩ B ) P ( B ) = P ( A 1 ) P ( B ∣ A 1 ) + P ( A 2 ) P ( B ∣ A 2 ) + . . . + P ( A n ) P ( B ∣ A n ) P(B)=P(A_{ 1 }\cap B)+P(A_{ 2 }\cap B)+...+P(A_{ n }\cap B)\\ P(B)=P(A_{ 1 })P(B|A_{ 1 })+P(A_{ 2 })P(B|A_{ 2 })+...+P(A_{ n })P(B|A_{ n }) P(B)=P(A1B)+P(A2B)+...+P(AnB)P(B)=P(A1)P(BA1)+P(A2)P(BA2)+...+P(An)P(BAn)
贝叶斯准则:设 A 1 , A 2 , . . . , A n A_1,A_2,...,A_n A1,A2,...,An是样本空间的一个分割, P ( A i ) > 0 P(A_i)>0 P(Ai)>0,则:
P ( C ∣ B ) = P ( C ∩ B ) P ( B ) = P ( C ) P ( B ∣ C ) P ( B ∩ A 1 ) + P ( B ∩ A 2 ) + . . . + P ( B ∩ A n ) P(C|B)=\frac { P(C \cap B) }{ P(B) } =\frac { P(C)P(B|C) }{ P(B\cap A_{ 1 })+P(B\cap A_{ 2 })+...+P(B\cap A_{ n }) } P(CB)=P(B)P(CB)=P(BA1)+P(BA2)+...+P(BAn)P(C)P(BC)

用全概率公式可以证明贝叶斯准则。贝叶斯准则联系了 P ( A ∣ B ) P(A|B) P(AB) P ( B ∣ A ) P(B|A) P(BA).贝叶斯准则可以用来进行因果推理,即知道结果,推测原因。这种概率称为后验概率。计算这种概率应严格采用贝叶斯公式计算,否则极易出错。

经典例子:假阳性问题。对于某种少见疾病(发病率0.001):有病检测结果成阳性的概率为0.95,无病检测结果成阳性的概率是0.05.
现有一结果成阳性的被检人,其患病概率是多少。
A 1 A_1 A1:有病 A 2 A_2 A2:无病。 B B B:检测成阳性。
P ( B ∣ A 1 ) = 0.95 , P ( B ∣ A 2 ) = 0.05 , P ( A 1 ) = 0.001 , P ( A 2 ) = 0.999 , P(B|A_1)=0.95,P(B|A_2)=0.05,P(A_1)=0.001,P(A_2)=0.999, P(BA1)=0.95,P(BA2)=0.05,P(A1)=0.001,P(A2)=0.999
P ( B ) = P ( A 1 ) P ( B ∣ A 1 ) + P ( A 2 ) P ( B ∣ A 2 ) = 0.00095 + 0.4995 = 0.0509 P(B)=P(A_1)P(B|A_1)+P(A_2)P(B|A_2)=0.00095+0.4995=0.0509 P(B)=P(A1)P(BA1)+P(A2)P(BA2)=0.00095+0.4995=0.0509
P ( A 1 ∣ B ) = P ( A 1 B ) P ( B ) = P ( A 1 ) P ( B ∣ A 1 ) P ( B ) = 0.0187 P(A_{ 1 }|B)=\frac { P(A_{ 1 }B) }{ P(B) } =\frac { P(A_{ 1 })P(B|A_{ 1 }) }{ P(B) } =0.0187 P(A1B)=P(B)P(A1B)=P(B)P(A1)P(BA1)=0.0187
这说明仪器的检测误差远大于发病率时,仪器的误诊率会相当高。当然这里面还存在一个问题,即被检人不是随意选取的,而是本身就怀疑自己患病的。

独立性

若事件 A , B A,B AB满足: P ( A B ) = P ( A ∩ B ) = P ( A ) P ( B ) P(AB)=P(A \cap B)=P(A)P(B) P(AB)=P(AB)=P(A)P(B),则称事件A,B互相独立。
注意:独立性的定义是从上面概率的关系式出发的。例如在区间[0,1]任选一实数,则事件A={x=0.1},事件B={x<0.5},A与B是相互独立的。
A,B互不相容是从事件本身出发定义的,一定不能同时发生,而独立则不同。事件A发生没有给事件B的概率提供任何信息则独立(即使提供了也不一定不独立)。
若事件A,B满足:
P ( A ∩ B ∣ C ) = P ( A ∣ C ) P ( B ∣ C ) P(A\cap B|C)=P(A|C)P(B|C) P(ABC)=P(AC)P(BC)
则称A,B在条件C下条件独立

注意:独立与条件独立不能互相推导出。A,B互相独立不能推出A,B在某条件下是否条件独立,反之亦然。例如:星期二男孩问题。
独 立 &lt; ≠ &gt; 条 件 独 立 独立 &lt;\neq&gt; 条件独立 ≮=>

一组事件的独立性:设 A 1 , A 2 , . . . , A n {A_1,A_2,...,A_n} A1,A2,...,An n n n个事件的集合,则对其任意子集都有 P ( A i A j . . . ) = P ( A i ) P ( A j ) . . . P(A_iA_j...)=P(A_i)P(A_j)... P(AiAj...)=P(Ai)P(Aj)...,则称这组事件相互独立。
注意:两两独立不能说明相互独立。相互独立需要满足的式子很多很多…

独立试验&二项概率
设试验由一系列独立并且相同的小试验组成,这种试验称为“独立试验序列”。当每个阶段的小试验只有两种结果时,称为独立的伯努利试验序列
n次试验其中k次成功的概率是
P ( X = k ) = C n k p k ( 1 − p ) n − k = ( n ! ) ( k ! ) ( n − k ) ! p k ( 1 − p ) n − k P(X=k)={ C }_{ n }^{ k }p^{ k }(1-p)^{ n-k }=\frac { (n!) }{ (k!)(n-k)! } p^{ k }(1-p)^{ n-k } P(X=k)=Cnkpk(1p)nk=(k!)(nk)!(n!)pk(1p)nk

2.离散随机变量

对于样本空间的一个试验结果,都关联着一个特定的数,这种关联关系就形成随机变量,随机变量是试验结果的实值函数。
随机变量的函数定义另一个随机变量。可以在某条件下定义随机变量。对于随机变量,可以定义均值和方差。
若随机变量的值域为有限集或者可数无限集,则称离散随机变量。本章的随机变量都是指离散随机变量

分布列

离散随机变量有一个分布列,它对于随机变量的每一个值给出一个概率。

伯努利分布列

伯努利随机变量分布列是:

X 1 0
P(X) p 1-p

二项随机变量:n次伯努利试验结果取到1的次数为二项随机变量。X=k的概率是
P ( X = k ) = C n k p k ( 1 − p ) n − k = ( n ! ) ( k ! ) ( n − k ) ! p k ( 1 − p ) n − k P(X=k)={ C }_{ n }^{ k }p^{ k }(1-p)^{ n-k }=\frac { (n!) }{ (k!)(n-k)! } p^{ k }(1-p)^{ n-k } P(X=k)=Cnkpk(1p)nk=(k!)(nk)!(n!)pk(1p)nk
几何随机变量:伯努利试验序列,直到试验结果取到1的所需的次数。
P ( X = k ) = ( 1 − p ) k − 1 p k P(X=k)=(1-p)^{k-1}p^k P(X=k)=(1p)k1pk
泊松随机变量:设随机变量的分布由下式给出:
P ( X = k ) = e − λ λ k k ! P(X=k)={ e }^{ -\lambda }\frac { { \lambda }^{ k } }{ k! } P(X=k)=eλk!λk
k = 0 , 1 , 2 , . . . k=0,1,2,... k=0,1,2,...
利用泊松分布可以逼近二项分布, λ ≈ n p \lambda \approx np λnp(n很大,p很小时).

随机变量的函数

Y = g ( X ) Y=g(X) Y=g(

  • 1
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值