Transformer模型在机器学习领域中迅速崭露头角,特别是在处理文本上下文时表现出色。为了帮助开发者深入理解这一技术并在LLM应用中发挥其最大潜力,本文将详细探讨Transformer模型的架构及其工作原理。
文本嵌入
Transformer模型能够撰写故事、随笔、诗歌,回答问题,进行语言翻译,与人类交流,甚至通过对人类来说困难的考试!但它们究竟是什么呢?幸运的是,Transformer模型的架构并不复杂,它只是一些有用组件的连接,每个组件都有其特定的功能。Transformer模型是如何工作的呢?当输人一个简单的句子时,如“Hello,howare”,Transformer模型可以预测出最可能的下一个词,如“you”。这是因为Transformer模型能够跟踪所写文本的上下文,从而使生成的文本有意义。
这种逐词构建文本的方法可能与人类形成句子和思考的方式不同,但这正是Transformer模型如此出色的原因:它们能够非常好地跟踪上下文,从而选择恰当的下一个词汇。下面是Transformer模型的主要知识:
- 标记化。标记化是文本处理的第一步。它涉及将每个单词、标点符号转换为一个已知的令牌。例如,句子“Write a story.”将被转换为四个相应的令牌:< Write >、< a >