Transtormer模型和语义搜索

    Transformer模型在机器学习领域中迅速崭露头角,特别是在处理文本上下文时表现出色。为了帮助开发者深入理解这一技术并在LLM应用中发挥其最大潜力,本文将详细探讨Transformer模型的架构及其工作原理。

文本嵌入

    Transformer模型能够撰写故事、随笔、诗歌,回答问题,进行语言翻译,与人类交流,甚至通过对人类来说困难的考试!但它们究竟是什么呢?幸运的是,Transformer模型的架构并不复杂,它只是一些有用组件的连接,每个组件都有其特定的功能。Transformer模型是如何工作的呢?当输人一个简单的句子时,如“Hello,howare”,Transformer模型可以预测出最可能的下一个词,如“you”。这是因为Transformer模型能够跟踪所写文本的上下文,从而使生成的文本有意义。

    这种逐词构建文本的方法可能与人类形成句子和思考的方式不同,但这正是Transformer模型如此出色的原因:它们能够非常好地跟踪上下文,从而选择恰当的下一个词汇。下面是Transformer模型的主要知识:

  1. 标记化。标记化是文本处理的第一步。它涉及将每个单词、标点符号转换为一个已知的令牌。例如,句子“Write a story.”将被转换为四个相应的令牌:< Write >、< a >
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

三月七꧁ ꧂

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值