Pytorch + DataSet + DataLoader实现k折交叉验证

博客介绍了使用Pytorch进行深度学习的步骤。首先继承DataSet创建自定义的PaddyDataSet,重写和补充相关方法;接着加载数据集和模型;最后划分训练集和验证集,完成模型的训练与验证。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 第一步:继承DataSet并创建自己的PaddyDataSet---一般是重写__init__()方法,__get_item()__方法,补充__len()__方法。

# PaddyDataSet
import torch
from torch.utils.data import Dataset
from PIL import Image
import os
import numpy as np
from torch.utils.data import DataLoader
import numpy as np
import torchvision.transforms as transforms

paddy_labels = {'bacterial_leaf_blight':0,'bacterial_leaf_streak':1,'bacterial_panicle_blight':2,'blast':3,'brown_spot':4,
              'dead_heart':5, 'downy_mildew':6, 'hispa':7, 'normal':8, 'tungro':9}

class PaddyDataSet(Dataset):
    def __init__(self, data_dir,transform=None):
        """
        数据集
        
        """
        self.label_name={'bacterial_leaf_blight':0,'bacterial_leaf_streak':1,'bacterial_panicle_blight':2,'blast':3,'brown_spot':4,
             
### 回答1: DatasetDataLoaderPyTorch 中用于加载和处理数据的两个主要组件。Dataset 用于从数据源中提取和加载数据,DataLoader 则用于将数据转换为适合机器学习模型训练的格式。 ### 回答2: 在PyTorch中,DatasetDataLoader是用于处理和加载数据的两个重要类。 Dataset是一个抽象类,用于表示数据集对象。我们可以自定义Dataset子类来处理我们自己的数据集。通过继承Dataset类,我们需要实现两个主要方法: - __len__()方法:返回数据集的大小(样本数量) - __getitem__(idx)方法:返回索引为idx的样本数据 使用Dataset类的好处是可以统一处理训练集、验证集和测试集等不同的数据集,将数据进行一致的格式化和预处理。 DataLoader是一个实用工具,用于将Dataset对象加载成批量数据。数据加载器可以根据指定的批大小、是否混洗样本和多线程加载等选项来提供高效的数据加载方式。DataLoader是一个可迭代对象,每次迭代返回一个批次的数据。我们可以通过循环遍历DataLoader对象来获取数据。 使用DataLoader可以实现以下功能: - 数据批处理:将数据集划分为批次,并且可以指定每个批次的大小。 - 数据混洗:可以通过设置shuffle选项来随机打乱数据集,以便更好地训练模型。 - 并行加载:可以通过设置num_workers选项来指定使用多少个子进程来加载数据,加速数据加载过程。 综上所述,DatasetDataLoaderPyTorch中用于处理和加载数据的两个重要类。Dataset用于表示数据集对象,我们可以自定义Dataset子类来处理我们自己的数据集。而DataLoader是一个实用工具,用于将Dataset对象加载成批量数据,提供高效的数据加载方式,支持数据批处理、数据混洗和并行加载等功能。 ### 回答3: 在pytorch中,Dataset是一个用来表示数据的抽象类,它封装了数据集的访问方式和数据的获取方法。Dataset类提供了读取、处理和转换数据的功能,可以灵活地处理各种类型的数据集,包括图像、语音、文本等。用户可以继承Dataset类并实现自己的数据集类,根据实际需求定制数据集。 Dataloader是一个用来加载数据的迭代器,它通过Dataset对象来获取数据,并按照指定的batch size进行分批处理。Dataloader可以实现多线程并行加载数据,提高数据读取效率。在训练模型时,通常将Dataset对象传入Dataloader进行数据加载,并通过循环遍历Dataloader来获取每个batch的数据进行训练DatasetDataloader通常配合使用Dataset用于数据的读取和预处理,Dataloader用于并行加载和分批处理数据。使用DatasetDataloader的好处是可以轻松地处理大规模数据集,实现高效的数据加载和预处理。此外,DatasetDataloader还提供了数据打乱、重复采样、数据划分等功能,可以灵活地控制数据的访问和使用。 总之,DatasetDataloaderpytorch中重要的数据处理模块,它们提供了方便的接口和功能,用于加载、处理和管理数据集,为模型训练和评估提供了便利。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值