四元数为什么没有万向节死锁问题

本文探讨了欧拉角在表示三维旋转时存在的自由度丢失问题,以及四元数如何通过旋转轴和旋转角度避免这一问题。四元数以其独特的数学结构确保了旋转表示的一致性和无歧义性,是现代三维图形学和航空航天计算中常用的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

欧拉角用三组旋转角来确定旋转。由于对三个轴的旋转有先后顺序,而在一些情况下(第二个轴旋转\pm 90^{\circ}),第三个轴的旋转本质上与第一个轴的旋转相等价,这时就造成了旋转上的“多对一”的映射,从而产生的缺失旋转自由度的问题。

而四元数使用旋转轴与旋转角度表示三维旋转。【找到的三个自由度是:旋转轴与旋转角度。(三维上可以用两个自由度表示一个方向,通常是方向与坐标轴的夹角)】。从原理上讲,不存在类似于欧拉角的自由度丢失问题。

至于四元数如何使用旋转轴与旋转角度表示三维旋转,可以参考下图公式,推导过程就略了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值