一、DataX3.0概述
http://datax-opensource.oss-cn-hangzhou.aliyuncs.com/datax.tar.gz
1、DataX 是一个异构数据源离线同步工具,致力于实现包括关系型数据库(MySQL、Oracle等)、HDFS、Hive、ODPS、HBase、FTP等各种异构数据源之间稳定高效的数据同步功能。
1.设计理念
为了解决异构数据源同步问题,DataX将复杂的网状的同步链路变成了星型数据链路,DataX作为中间传输载体负责连接各种数据源。当需要接入一个新的数据源的时候,只需要将此数据源对接到DataX,便能跟已有的数据源做到无缝数据同步。
2.当前使用现状
DataX在阿里巴巴集团内被广泛使用,承担了所有大数据的离线同步业务,并已持续稳定运行了6年之久。目前每天完成同步8w多道作业,每日传输数据量超过300TB。
此前已经开源DataX1.0版本,此次介绍为阿里云开源全新版本DataX3.0,有了更多更强大的功能和更好的使用体验。Github主页地址:https://github.com/alibaba/DataX
二、DataX3.0框架设计
DataX本身作为离线数据同步框架,采用Framework + plugin架构构建。将数据源读取和写入抽象成为Reader/Writer插件,纳入到整个同步框架中。
Reader:Reader�为数据采集模块,负责采集数据源的数据,将数据发送给Framework。
Writer: Writer为数据写入模块,负责不断向Framework取数据,并将数据写入到目的端。
Framework:Framework用于连接reader和writer,作为两者的数据传输通道,并处理缓冲,流控,并发,数据转换等核心技术问题。
三、DataX3.0核心架构
DataX 3.0 开源版本支持单机多线程模式完成同步作业运行,本小节按一个DataX作业生命周期的时序图,从整体架构设计非常简要说明DataX各个模块相互关系。
核心模块介绍:
1.DataX完成单个数据同步的作业,我们称之为Job,DataX接受到一个Job之后,将启动一个进程来完成整个作业同步过程。DataX Job模块是单个作业的中枢管理节点,承担了数据清理、子任务切分(将单一作业计算转化为多个子Task)、TaskGroup管理等功能。
2.DataXJob启动后,会根据不同的源端切分策略,将Job切分成多个小的Task(子任务),以便于并发执行。Task便是DataX作业的最小单元,每一个Task都会负责一部分数据的同步工作。
3.切分多个Task之后,DataX Job会调用Scheduler模块,根据配置的并发数据量,将拆分成的Task重新组合,组装成TaskGroup(任务组)。每一个TaskGroup负责以一定的并发运行完毕分配好的所有Task,默认单个任务组的并发数量为5。
4.每一个Task都由TaskGroup负责启动,Task启动后,会固定启动Reader—>Channel—>Writer的线程来完成任务同步工作。
5.DataX作业运行起来之后, Job监控并等待多个TaskGroup模块任务完成,等待所有TaskGroup任务完成后Job成功退出。否则,异常退出,进程退出值非0
DataX调度流程:
举例来说,用户提交了一个DataX作业,并且配置了20个并发,目的是将一个100张分表的mysql数据同步到odps里面。 DataX的调度决策思路是:
1.DataXJob根据分库分表切分成了100个Task。
2.根据20个并发,DataX计算共需要分配4个TaskGroup。
3.4个TaskGroup平分切分好的100个Task,每一个TaskGroup负责以5个并发共计运行25个Task。
四 Datax安装和部署
datax运行环境要求
Linux
JDK(1.8以上,推荐1.8)
Python(推荐Python2.6.X)
Apache Maven 3.x (Compile DataX)
** 安装Apache Maven 3.x**
1、从官网下载系统对应压缩包(注意:Binary tar包适用于unix系统;Source tar包适用于windows系统)
2、安装 - 官方参考文档
官网下载的包也是免编译安装的,只要配置环境变量就行。这里我只翻译unix系统下的设置方法,window类似。
vi /etc/profile
#maven
export MAVEN_HOME=/usr/local/work/maven/apache-maven-3.8.2
export PATH=$PATH:$MAVEN_HOME/bin
使命令生效
source /etc/profile
安装Datax
1.下载
wget http://datax-opensource.oss-cn-hangzhou.aliyuncs.com/datax.tar.gz
2、解压
tar -zxvf datax.tar.gz
datax解压缩成功了,开始自检,进入datax/bin目录,开始自检
python datax.py ../job/job.json
参考:
https://github.com/alibaba/DataX/blob/master/introduction.md