1、大模型及InterbLM模型介绍
什么是大模型:
InterbLM模型介绍:
2、InterbLM-Chat-7B智能对话Demo
3、Lagent智能体工具调用Demo
4、浦语·灵笔图文创作理解Demo
例子:
一、环境准备
1、进入conda环境
2、进入 conda 环境之后,使用以下命令从本地克隆一个已有的 pytorch 2.0.1 的环境
bash /root/share/install_conda_env_internlm_base.sh internlm-demo # 执行该脚本文件来安装项目实验环境
3、使用以下命令激活环境
conda activate internlm-demo
4、在环境中安装运行 demo 所需要的依赖。
python -m pip install --upgrade pip
pip install modelscope1.9.5
pip install transformers4.35.2
pip install streamlit1.24.0
pip install sentencepiece0.1.99
pip install accelerate==0.24.1
二、模型下载
1、InternStudio 平台的 share 目录下已经为我们准备了全系列的 InternLM 模型,可以直接复制。
mkdir -p /root/model/Shanghai_AI_Laboratory
cp -r /root/share/temp/model_repos/internlm-chat-7b /root/model/Shanghai_AI_Laboratory
-r 选项表示递归地复制目录及其内容
2、使用 modelscope 中的 snapshot_download 函数下载模型,第一个参数为模型名称,参数 cache_dir 为模型的下载路径。
在 /root 路径下新建目录 model,在目录下新建 download.py 文件并在其中输入以下内容,粘贴代码后记得保存文件,如下图所示。并运行 python /root/model/download.py 执行下载,模型大小为 14 GB,下载模型大概需要 10~20 分钟
import torch
from modelscope import snapshot_download, AutoModel, AutoTokenizer
import os
model_dir = snapshot_download(‘Shanghai_AI_Laboratory/internlm-chat-7b’, cache_dir=‘/root/model’, revision=‘v1.0.3’)
注意:使用 pwd 命令可以查看当前的路径,JupyterLab 左侧目录栏显示为 /root/ 下的路径。
三、代码
1、 克隆代码,在 /root 路径下新建 code 目录,然后切换路径, clone 代码.
cd /root/code
git clone https://gitee.com/internlm/InternLM.git
2、切换 commit 版本,与教程 commit 版本保持一致,可以让大家更好的复现。
cd InternLM
git checkout 3028f07cb79e5b1d7342f4ad8d11efad3fd13d17
3、将 /root/code/InternLM/web_demo.py 中 29 行和 33 行的模型更换为本地的 /root/model/Shanghai_AI_Laboratory/internlm-chat-7b。
四、终端运行
我们可以在 /root/code/InternLM 目录下新建一个 cli_demo.py 文件,将以下代码填入其中:
然后在终端运行以下命令,即可体验 InternLM-Chat-7B 模型的对话能力。
python /root/code/InternLM/cli_demo.py