随机森林

集成算法:
single、bagging(装袋法)、boosting(提升法)

装袋法的核心思想是构建多个相互独立的评估器,然后对其进行平均或多数表决原则来决定集成评估器的结果。装袋法的代表模型就是随机森林。

sklearn中的集成算法
sklearn中的集成算法模块:ensemble

类的功能
ensemble.AdaBoostClassifierAdaboost分类
ensemble.AdaBoostRegressorAdaboost回归
ensemble.BaggingClaffier装袋分类器
ensemble.BaggingRegressor装袋回归器
ensemble.ExtraTreesClassifierExtra-trees分类(超树,极端随机树)
ensemble.ExtraTreesRegressorExtra-trees回归
ensemble.GradientBoostingClassifier梯度提升分类树
ensemble.GradientBoostingRegressor梯度提升回归树
ensemble.IsolationForest隔离森林
ensemble.RandomForestClassifier随机森林分类
ensemble.RandomForestRegressor随机森林回归
ensemble.RandomTreeEmbedding完全随机树的集成
ensemble.VotingClassifier用于不适合估算器的软投票/多数规则分类器

在这里插入图片描述在这个流程下,随机森林对应的代码和决策树基本一致:

from sklearn.tree import RandomForestClassifier #导入需要的模块

rfc=RandomForestClassifier() #实例化
rfc=rfc.fit(X_train,Y_train) #用训练集数据训练模型
result=rfc.score(X_test,Y_test)  #导入测试集,从接口中调用需要的信息

随机森林是非常具有代表性的Bagging算法,他的所有基评估器都是决策树,分类树组成的森林就是随机森林分类器,回归树所集成的森林就是随机森林回归器。

参数含义
criterion不纯度的衡量指标,有基尼系数和信息熵两种选择
max_depth树的最大深度,超过最大深度的树枝都会被剪掉
min_samples_leaf一个节点在分支后的每个子节点都必须包含至少min_samples_leaf个训练样本,否则分支就不会发生
min_samples_split一个节点必须要包含至少min_samples_split个训练样本,这个节点才允许被分支,否则分支就不会发生
max_featuresmax_features限制分支时考虑的特征数,超过限制个数的特征都会舍弃,默认值为总特征个数开平方再取整
min_impurity_decrease限制信息增益的大小,信息增益小于设定数值的分支就不会发生
n_estimators森林中数木的数量,即基评估器的数量。(越大往往效果越好,但是也会有边界波动,并且需要的计算量和内存也会越大)

在机器学习中,我们用来衡量模型在未知数据上的准确率的指标,叫做泛化误差

当模型在未知数据(测试集或袋外数据)上表现糟糕时,说模型的泛化程度不够,泛化误差大,模型的效果不好。泛化误差受到模型结构的影响。
在这里插入图片描述对于树模型来说,树越茂盛,深度越深,树枝越多,模型就越复杂。所以树模型是天生就在图的左上角的。随机森林是以树模型为基础,所以随机森林是天生复杂度高的模型。随机森林的参数,都是朝着一个目标去的:减少模型的复杂度,把模型往图像的左边移动,防止过拟合。。当然,调参没有绝对,所以在调参之前,要先判断究竟处于图像的哪一边。

在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值