集成算法:
single、bagging(装袋法)、boosting(提升法)
装袋法的核心思想是构建多个相互独立的评估器,然后对其进行平均或多数表决原则来决定集成评估器的结果。装袋法的代表模型就是随机森林。
sklearn中的集成算法
sklearn中的集成算法模块:ensemble
类 | 类的功能 |
---|---|
ensemble.AdaBoostClassifier | Adaboost分类 |
ensemble.AdaBoostRegressor | Adaboost回归 |
ensemble.BaggingClaffier | 装袋分类器 |
ensemble.BaggingRegressor | 装袋回归器 |
ensemble.ExtraTreesClassifier | Extra-trees分类(超树,极端随机树) |
ensemble.ExtraTreesRegressor | Extra-trees回归 |
ensemble.GradientBoostingClassifier | 梯度提升分类树 |
ensemble.GradientBoostingRegressor | 梯度提升回归树 |
ensemble.IsolationForest | 隔离森林 |
ensemble.RandomForestClassifier | 随机森林分类 |
ensemble.RandomForestRegressor | 随机森林回归 |
ensemble.RandomTreeEmbedding | 完全随机树的集成 |
ensemble.VotingClassifier | 用于不适合估算器的软投票/多数规则分类器 |
在这个流程下,随机森林对应的代码和决策树基本一致:
from sklearn.tree import RandomForestClassifier #导入需要的模块
rfc=RandomForestClassifier() #实例化
rfc=rfc.fit(X_train,Y_train) #用训练集数据训练模型
result=rfc.score(X_test,Y_test) #导入测试集,从接口中调用需要的信息
随机森林是非常具有代表性的Bagging算法,他的所有基评估器都是决策树,分类树组成的森林就是随机森林分类器,回归树所集成的森林就是随机森林回归器。
参数 | 含义 |
---|---|
criterion | 不纯度的衡量指标,有基尼系数和信息熵两种选择 |
max_depth | 树的最大深度,超过最大深度的树枝都会被剪掉 |
min_samples_leaf | 一个节点在分支后的每个子节点都必须包含至少min_samples_leaf个训练样本,否则分支就不会发生 |
min_samples_split | 一个节点必须要包含至少min_samples_split个训练样本,这个节点才允许被分支,否则分支就不会发生 |
max_features | max_features限制分支时考虑的特征数,超过限制个数的特征都会舍弃,默认值为总特征个数开平方再取整 |
min_impurity_decrease | 限制信息增益的大小,信息增益小于设定数值的分支就不会发生 |
n_estimators | 森林中数木的数量,即基评估器的数量。(越大往往效果越好,但是也会有边界波动,并且需要的计算量和内存也会越大) |
在机器学习中,我们用来衡量模型在未知数据上的准确率的指标,叫做泛化误差。
当模型在未知数据(测试集或袋外数据)上表现糟糕时,说模型的泛化程度不够,泛化误差大,模型的效果不好。泛化误差受到模型结构的影响。
对于树模型来说,树越茂盛,深度越深,树枝越多,模型就越复杂。所以树模型是天生就在图的左上角的。随机森林是以树模型为基础,所以随机森林是天生复杂度高的模型。随机森林的参数,都是朝着一个目标去的:减少模型的复杂度,把模型往图像的左边移动,防止过拟合。。当然,调参没有绝对,所以在调参之前,要先判断究竟处于图像的哪一边。