一篇文章,教你读懂度量学习、三元组损失函数

首次注册CSDN网站,先简单概括一下今天学习的几种损失函数吧!
1、
在这里插入图片描述
上图的embedding直译过来是–对称嵌入,就是我们经常提到的二元组,看下面的公式定义的损失:
在这里插入图片描述
这种方法在 paired data (xi,xj,yij)(xi,xj,yij)上进行训练。这种 contrastive training 最小化具有相同 label 类别的样本之间的距离,然后对不同label的样本,但是其距离小于 αα 的 negative pair 给予惩罚。
其中,m 代表batch中图像的个数,f(*)是网路输出的特征,即原文中表达的:the feature embedding output from the network. Di,jDi,j 是两个样本特征之间欧式距离的度量。标签 yi,j∈0,1yi,j∈0,1表明是否样本对来自同一个类别。[∗]+[∗]+ 操作是 the hinge function max(0, *)。
上面的公式就很好的正面了最后训练的正样本会最小化,若是负样本会给与惩罚。
2、
在这里插入图片描述
三元组损失函数的提出还是有很大提高的,下面简单的看下定义:
在这里插入图片描述
其思想即是:找一个 anchor,然后找一个正样本,一个负样本。训练的目的就是:鼓励网络找到一个 embedding 使得 xa and xn 之间的距离大于 xa and xp 加上一个 margin αα 的和。
其中,D仍然表示样本之间特征的距离。
3、
在三元组损失函数的改进上提出:在这里插入图片描述
感觉这种想法很容易想的到,可是为什么自己做不出来呢?为什么人家拿过来做到了,还发了CVPR…
看一下这个度量方法的具体实现吧!
在这里插入图片描述
其中,P 是正样本的集合,N 是负样本的集合。这个函数提出了两个计算上的挑战:

1. 非平滑(non-smooth)

2. 评价和计算其子梯度需要最小化所有样本对若干次。
我们以两种方式解决了上述挑战:

首先,作者的工作优化上述函数的一个平滑上界;

第二,对于大数据常用的方法类似,采用随机的方法。

然而,前人的工作都是用SGD的方法,随机的均匀的选择 pairs or triplets。这篇工作的方法从这之中得到了借鉴:

(1). it biases the sample towards including “difficult” pairs, just like a subgradient of Ji,jJi,j would use the close negative pairs;

(2). 一次采样就充分的利用了一个 mini-batch的全部信息,而不仅仅是两个pair之间的信息。
为了充分的利用这个 batch,一个关键的 idea 是增强 mini-batch 的优化以利用所有的pairs。
需要注意的是:随机采样的样本对之间的 negative edges 携带了非常有限的信息。
看一下这篇损失函数的定义:
在这里插入图片描述
 其中,P是batch中 positive pairs 集合,N 是negative pairs 的集合。后向传播梯度可以如算法1所示的那样,对应距离的梯度为:
 在这里插入图片描述
 就分享这三部分内容吧,以后慢慢整理!我是览音,欢迎各位批评指正!

  • 5
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 8
    评论
交叉熵损失函数三元组损失函数是两种常用的损失函数,它们在不同的场景中有不同的应用。 交叉熵损失函数通常用于分类任务,特别是多分类问题。它通过计算模型的预测结果与真实标签之间的差异来反映模型的训练效果。交叉熵损失函数可用于将模型的预测值与真实标签进行比较,并通过最小化损失函数来调整模型的参数。在训练过程中,交叉熵损失函数会根据模型预测的概率分布与真实标签之间的差异来调整模型参数,使得预测结果更接近真实情况。 三元组损失函数主要用于度量学习任务,特别是人脸识别、图像检索等问题。在度量学习中,我们需要学习一个嵌入空间,使得相似样本之间的距离更近,不相似样本之间的距离更远。三元组损失函数通过计算锚样本、正样本和负样本之间的距离关系来衡量模型学习到的嵌入空间的质量。具体来说,对于每个锚样本,我们选取一个正样本(与锚样本相似)和一个负样本(与锚样本不相似),通过最小化锚样本与正样本之间的距离,最大化锚样本与负样本之间的距离来优化模型的参数。 当需要同时解决分类任务和度量学习任务时,我们可以联合使用交叉熵损失函数三元组损失函数进行训练。具体做法是,在训练过程中同时计算交叉熵损失和三元组损失,并将两者的权重进行调整。这样可以使得模型在分类任务中预测准确性更高,在度量学习任务中学习到更好的嵌入空间。通过联合训练,我们可以更好地利用数据中的信息,提升模型的性能。
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值