Day28 完全背包 分组背包 多重背包

完全背包一维时就是用更新过的原来的f[i]来更新下一层
转移方程是
f[i][j]=max(f[i][j],f[i][j-v[i]]+w[i])

分析如下
在这里插入图片描述

所以j要从小到大枚举
传送门

#include<iostream>
using namespace std;
const int N=1010;
int f[N];

int w[N],v[N];

int main(){
    int n,V;
    cin>>n>>V;
    
    for(int i=1;i<=n;i++){
        cin>>v[i]>>w[i];
    }
    
    for(int i=1;i<=n;i++){
        for(int j=v[i];j<=V;j++){
            f[j]=max(f[j],f[j-v[i]]+w[i]);
        }
    }
    cout<<f[V];
    return 0;
}

多重背包

传送门
传送门
多重背包分析
需要使用倍增的思想
把每种物品打包成2的幂次倍,就可以优化一个logk
原理是这样
把数k分成1,2,4,8,……,2logk-1,k-2logk+1
就可以以这些数拼接成任意k以内的所有数
比如9=1+2+4+2
注意log是以2为底的

记得要把数组开大

#include<iostream>
using namespace std;
const int N=110,M=100000;
int f[N],vv[M],ww[M];
int main(){
    int n,V,cnt=0;
    cin>>n>>V;
    for(int i=1;i<=n;i++){
        int v,w,s;
        cin>>v>>w>>s;
        int t=1;
        while(s>=t){
            cnt++;
            vv[cnt]=t*v;
            ww[cnt]=t*w;
            s-=t;				//记得减掉
            t<<=1;
            
        }
        cnt++;
        vv[cnt]=s*v;
        ww[cnt]=s*w;
    }
    
    for(int i=1;i<=cnt;i++){			//注意是cnt
        for(int j=V;j>=vv[i];j--){
            f[j]=max(f[j],f[j-vv[i]]+ww[i]);
        }
    }
    cout<<f[V];
    return 0;
}

分组背包
就是一个01背包加上一个循环
传送门

#include<iostream>
using namespace std;
const int N=110;
int v[N][N],s[N],w[N][N],f[N];
int main(){
    int n,V;
    cin>>n>>V;
    
    for(int i=1;i<=n;i++){
        cin>>s[i];
        for(int j=1;j<=s[i];j++){
            cin>>v[i][j]>>w[i][j];
        }
    }
    
    for(int i=1;i<=n;i++){
        for(int j=V;j>=0;j--){
            for(int k=1;k<=s[i];k++){
                if(v[i][k]<=j)
                f[j]=max(f[j],f[j-v[i][k]]+w[i][k]);
            }
        }
    }
    cout<<f[V];
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值