完全背包一维时就是用更新过的原来的f[i]来更新下一层
转移方程是
f[i][j]=max(f[i][j],f[i][j-v[i]]+w[i])
分析如下
所以j要从小到大枚举
传送门
#include<iostream>
using namespace std;
const int N=1010;
int f[N];
int w[N],v[N];
int main(){
int n,V;
cin>>n>>V;
for(int i=1;i<=n;i++){
cin>>v[i]>>w[i];
}
for(int i=1;i<=n;i++){
for(int j=v[i];j<=V;j++){
f[j]=max(f[j],f[j-v[i]]+w[i]);
}
}
cout<<f[V];
return 0;
}
多重背包
传送门
传送门
多重背包分析
需要使用倍增的思想
把每种物品打包成2的幂次倍,就可以优化一个logk
原理是这样
把数k分成1,2,4,8,……,2logk-1,k-2logk+1
就可以以这些数拼接成任意k以内的所有数
比如9=1+2+4+2
注意log是以2为底的
记得要把数组开大
#include<iostream>
using namespace std;
const int N=110,M=100000;
int f[N],vv[M],ww[M];
int main(){
int n,V,cnt=0;
cin>>n>>V;
for(int i=1;i<=n;i++){
int v,w,s;
cin>>v>>w>>s;
int t=1;
while(s>=t){
cnt++;
vv[cnt]=t*v;
ww[cnt]=t*w;
s-=t; //记得减掉
t<<=1;
}
cnt++;
vv[cnt]=s*v;
ww[cnt]=s*w;
}
for(int i=1;i<=cnt;i++){ //注意是cnt
for(int j=V;j>=vv[i];j--){
f[j]=max(f[j],f[j-vv[i]]+ww[i]);
}
}
cout<<f[V];
return 0;
}
分组背包
就是一个01背包加上一个循环
传送门
#include<iostream>
using namespace std;
const int N=110;
int v[N][N],s[N],w[N][N],f[N];
int main(){
int n,V;
cin>>n>>V;
for(int i=1;i<=n;i++){
cin>>s[i];
for(int j=1;j<=s[i];j++){
cin>>v[i][j]>>w[i][j];
}
}
for(int i=1;i<=n;i++){
for(int j=V;j>=0;j--){
for(int k=1;k<=s[i];k++){
if(v[i][k]<=j)
f[j]=max(f[j],f[j-v[i][k]]+w[i][k]);
}
}
}
cout<<f[V];
return 0;
}