问题链接:Problem F
问题简述:
Ignatius梦到自己在迷宫里被炸弹炸,每走一步耗时一分钟,六分钟后炸弹爆炸,但在迷宫中有能恢复炸弹时间的装置(炸弹时间为0时不能用),Ignatius有可能为了延长炸弹时间而走回头路,求Ignatius逃离迷宫的最短时间
问题分析:
搜索最短路径问题,还是要用BFS算法。本题难点在于:可以走回头路。
可以走回头路的说明并不标志着我们不需要对路径进行标志,但是若不标志则很有可能发生队列过长导致TLE甚至程序崩溃,因此需要思考另一种方式对路径进行标记。不难发现,当两条队列走到同一个位置时,身上剩余炸弹时间更小的队列是没有意义的,因此我们可以用标记数组对路径的剩余炸弹时间进行记录,当炸弹时间大于记录的炸弹时间时,可以入列。
程序说明:
唯一需要注意的是由于炸弹时间重置装置的存在,不能遇到bomb时间等于0的时候立即return -1,因为压入队列的两条队伍炸弹时间可能不对等,因此需要等队列为空后,才能判断无法走到终点。
AC通过的C语言程序如下:
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<algorithm>
#include<queue>
#include<set>
#include<cstring>
#include<cmath>
#define MAX 0x3f3f3f3f
using namespace std;
int vis[10][10];
int map[10][10];
int n,m;
int dir[4][2]={1,0,-1,0,0,1,0,-1};
struct node{
int x;
int y;
int step;
int bomb;
};
bool edge(int x,int y){
if(x>=0&&y>=0&&x<n&&y<m&&map[x][y]!=0){
return 1;
}
else{
return 0;
}
}
int BFS(int x,int y){
queue<node>q;
node p1;
p1.x=x;
p1.y=y;
p1.step=0;
p1.bomb=6;
vis[x][y]=p1.bomb;
q.push(p1);
while(!q.empty()){
node p2=q.front();
q.pop();
if(p2.bomb<=0){
continue;
}
else if(map[p2.x][p2.y]==3)
return p2.step;
for(int i=0;i<4;i++){
int next_x=p2.x+dir[i][0];
int next_y=p2.y+dir[i][1];
p1.step=p2.step+1;
p1.bomb=p2.bomb-1;
if(edge(next_x,next_y)&&vis[next_x][next_y]<p1.bomb){
p1.x=next_x;
p1.y=next_y;
vis[next_x][next_y]=p1.bomb;
if(map[next_x][next_y]==4&&p1.bomb>0)
p1.bomb=6;
q.push(p1);
}
}
}
return -1;
}
int main(){
int t;
scanf("%d",&t);
while(t--){
scanf("%d%d",&n,&m);
memset(vis,0,sizeof(vis));
int x;
int y;
for(int i=0;i<n;i++){
for(int j=0;j<m;j++){
scanf("%d",&map[i][j]);
if(map[i][j]==2){
x=i;
y=j;
}
}
}
int ans=BFS(x,y);
cout<<ans<<endl;
}
}