pip、conda安装包(库)失败解决办法

为方便只想要镜像源配置文件内容的小伙伴,文末提供了我的配置方法,可直接复制。

1.镜像源解决法

比较万能的办法,可以解决包下载慢的问题。下面是具体操作办法:
pip源更换:

windows下:

在C:\Users\XXX下新建一个文件夹,重命名为pip。

在pip文件夹里面新建一个文本文档,并重新命名为:pip.ini,需要修改后缀。

在pip.ini里面添加下面的信息(采用阿里云):

[global]
trusted-host = mirrors.aliyun.com
index-url = http://mirrors.aliyun.com/pypi/simple

ubuntu下:

在home目录下新建.pip文件:

cd ~
mkdir .pip

直接新建并编辑pip.conf:

sudo vim ~/.pip/pip.conf

改为以下内容(这里用的清华源,也可以试一下阿里、豆瓣等源):

[global]
index-url = https://pypi.tuna.tsinghua.edu.cn/simple/ 
[install]
trusted-host = pypi.tuna.tsinghua.edu.cn

补充:

为了方便用python3开发,免去每次都要输入python3,这里直接更换默认的python命令链接。

把原来的python软链接删掉:

sudo rm /usr/bin/python

新建一个软连接:

sudo ln -s /usr/bin/python3 /usr/bin/python
sudo ln -s /usr/bin/pip3 /usr/bin/pip

现在输入python就相当于python3了。

conda源更换:

更换pip、conda镜像源:可以参考清华源网站。

pypi:https://mirrors.tuna.tsinghua.edu.cn/help/pypi/

anaconda:https://mirrors.tuna.tsinghua.edu.cn/help/anaconda/

添加方法:

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/  # 添加单个源
conda config --set show_channel_urls yes

相应的删除源的办法如下:

conda config --remove channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/  # 删除单个源
conda config --remove-key channels  # 删除所有源

查看当前镜像源:

conda config --show-sources

临时使用指定镜像源

方法一:

conda install pytorch torchvision cudatoolkit=10.0 -i https://pypi.mirrors.ustc.edu.cn/simple

方法二:

conda install -c <channel> <software>

其中-c这个参数很重要,通过它来指定软件下载的镜像位置。

比如conda install pytorch torchvision torchaudio -c pytorch,就是指通过pytorch官网下载,如果你想下载的快点,就先配置好镜像源,然后把-c pytorch删了,这样安装的时候就会从镜像源去搜索。为了清除索引缓存,保证用的是镜像站提供的索引。我们还可以先运行下面的命令:

conda clean -i

补充:如果修改了镜像源还是报错HTTP 000 CONNECTION,一般是网络问题,多尝试几次可能就成功了。

2.修改单次超过时间(特好用)

如果报错信息为timeout,可以临时更改timeout的时间。

pip --default-timeout=600 install **  # **是包名

3.更改包下载位置

如果报错为:Requirement already satisfied,可以选择更改包的下载位置。

pip install --target=./anaconda3/envs/kidney_segmentation/lib/python3.9/site-packages **  # **是包名

如果运行命令后有warnings,比如specify --upgrade。

可以先conda list看看需要的包是否已经安装好了,如果安装好了,那么warnings不管也行。倘若没有安装好,则在上面命令最后加一句 --upgrade再运行即可。

4.网站下载,本地手动安装(后续更新方法)


常用网站汇总

镜像:

pypi:https://mirrors.tuna.tsinghua.edu.cn/help/pypi/

anaconda:https://mirrors.tuna.tsinghua.edu.cn/help/anaconda/

包下载:https://pypi.org/search/?q=&o=

我的配置文档:

pip:

[global]
trusted-host = mirrors.aliyun.com
index-url = http://mirrors.aliyun.com/pypi/simple

conda:

channels:
  - http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/bioconda/
  - http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2/
  - http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/
  - http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
  - http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
  - http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
  - http://mirrors.ustc.edu.cn/anaconda/cloud/bioconda/
  - http://mirrors.ustc.edu.cn/anaconda/cloud/msys2/
  - http://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge/
  - http://mirrors.ustc.edu.cn/anaconda/pkgs/free/
  - http://mirrors.ustc.edu.cn/anaconda/pkgs/main/
  - defaults
show_channel_urls: true
ssl_verify: true

更多conda命令:
conda Cheat sheet

参考

https://zhuanlan.zhihu.com/p/336429888

https://www.jianshu.com/p/9ce5f3c3af99

### 如何使用 Conda 安装包 Conda 是一个开放源码的软件包管理环境管理系统,用于安装多个版本的软件包及其依赖关系,并在它们之间轻松切换。以下是关于如何使用 Conda 进行包管理的具体方法。 #### 配置国内镜像加速下载速度 为了提高安装效率并减少网络问题带来的困扰,在中国地区可以配置清华等国内镜像作为默认下载源: ```bash conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/ ``` 此命令会将 Tsinghua 的免费仓加入到 channel 列表中[^3]。 #### 单个包的安装 对于单个包的安装可以直接通过 `conda install` 命令完成。例如要安装 NumPy ,则执行如下指令: ```bash conda install numpy ``` 如果遇到特定版本需求或者希望从某个特殊渠道获取包时,可以在后面加上 `-c` 参数指定额外的频道地址。比如安装 Pandas Alive 可视化: ```bash conda install -c conda-forge pandas_alive ``` 这里指定了来自 conda-forge 社区维护的一个分支来提供该扩展功能[^5]。 #### 批量处理多包或整个环境 当面对大量依赖项或是想要复制现有工作空间至另一台机器上时,可以通过导出当前环境中已有的全部组件列表形成文本文件再读取的方式实现快速部署: 保存现有的所有包信息到名为 requirements.txt 文件里: ```bash conda list -e > requirements.txt ``` 之后便能在其他地方利用这份清单重建相同的运行条件: ```bash conda install --yes --file requirements.txt ``` 这种方式不仅简化了重复劳动还确保了一致性[^2]。 #### 解决常见错误提示 有时可能会碰到类似于"Solving environment: failed"这样的报错情况,这通常是因为某些复杂环境下求解冲突所致。此时建议尝试更换为 pip 工具来进行相同名称模块的引入;另外也可以考虑更新 conda 自身版本以获得更好的兼容性性能优化支持[^1]。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值