1、How Do I Get Started?
如何开始ML的旅程?
1、学习方法:采用自顶向下的方法学习,待着任务寻找答案
2、ML应用的5步骤:定义问题,准备数据,抽查算法,提升结果,展示结果
3、工具选择:如果没有代码基础可以用weka,一个不用代码的ML平台
4、在小型数据集上练习,提升能力
5、形成自己的文档集,收集项目、记录技能、心得细节等
6、相关平台:UCI数据集、kaggle比赛平台
小结:入门引言,有个大致了解,知道应该如何学习,有个蓝图
14、Deep Learning (Keras)
1、什么是深度学习?为什么用“深度”这个概念?为什么最近10年迅速发展?
2、Theano和TF是快速数值计算的框架,keras是深度学习的小型库,可以基于Theano或TensorFlow运行,是的模型的构建变得简单容易。
3、使用keras搭建简单的神经网络模型:(1)加载数据;(2)定义模型:确定模型结构,例如输入层的维度input_dim;确定每层的类型,激活函数,神经元数量;输出层等);(3)编译模型:选择梯度下降方法,模型度量值(4)模型拟合:epoch,batch_size设置(5)模型评估:evaluate(6)模型预测predict
参考资料
Step-by-Step Guides: https://machinelearningmastery.com/start-here/#process