高量题目汇总

第一章 算符

第二章 动力学

  1. Feynman pathway integral. For haomonic osscialtor, calculate classical L c l a s s i c a l = T − V L_{classical}=T-V Lclassical=TV and action S = ∫ L d t S = \int Ldt S=Ldt over Δ t \Delta t Δt; and prove that ⟨ x n , t n ∣ x n − 1 t n − 1 ⟩ = exp ⁡ ( i S / ℏ ) \langle x_n, t_n| x_{n-1}t_{n-1}\rangle = \exp(iS/\hbar) xn,tnxn1tn1=exp(iS/) is satisfied when Δ t → 0 \Delta t\rightarrow0 Δt0

    解: L c l a s s c i a l = 1 2 m x ˙ 2 − 1 2 m ω 2 x 2 L_{classcial} = \frac12 m\dot{x}^2-\frac12m\omega^2x^2 Lclasscial=21mx˙221mω2x2, S ≈ 1 2 m ( Δ x Δ t ) 2 − 1 2 m ω 2 x b 2 Δ t S \approx \frac12m(\frac{\Delta x}{\Delta t})^2-\frac12m\omega^2x_b^2\Delta t S21m(ΔtΔx)221mω2xb2Δt

    K ( x b , t b ; x a , t a ) = m ω 2 2 π i ℏ sin ⁡ ( ω Δ t ) exp ⁡ ( i m ω 2 ℏ sin ⁡ ( ω Δ t ) × { ( x b 2 + x a 2 ) cos ⁡ ( ω Δ t ) − 2 x b x a } ) ≈ m ω 2 π i ℏ Δ t exp ⁡ ( i S / ℏ ) \begin{aligned} K(x_b,t_b;x_a,t_a) &= \sqrt{\frac{m\omega^2}{2\pi i \hbar\sin(\omega \Delta t)}}\exp(\frac{im\omega}{2\hbar\sin(\omega \Delta t)}\times \{(x_b^2+x_a^2)\cos(\omega \Delta t)-2x_bx_a\})\\ & \approx \sqrt{\frac{m\omega}{2\pi i\hbar \Delta t}} \exp(iS/\hbar) \end{aligned} K(xb,tb;xa,ta)=2πisin(ωΔt)mω2 exp(2sin(ωΔt)imω×{ (xb2+xa2)cos(ωΔt)2xbxa})2πiΔtmω exp(iS/)

    same as Feynman’s method

  2. H = ω S z H=\omega S_z H=ωSz S x ( t ) , S y ( t ) , S z ( t ) S_x(t),S_y(t),S_z(t) Sx(t),Sy(t),Sz(t)

  3. 证明: ψ ( x ′ ′ , t ′ ′ ) = ∫ K ( x ′ ′ , t ′ ′ ; x ′ , t ′ ) ψ ( x ′ , t ′ ) d x ′ \psi(x'',t'')=\int K(x'',t'';x',t')\psi(x',t')dx' ψ(x,t)=K(x,t;x,t)ψ(x,t)dx 满足 Schrodinger波动方程

  4. 电子在均匀磁场 B = B z ^ B = B\hat{z} B=Bz^ 中运动,说明能量为: E k , n = ℏ 2 k 2 / 2 m + ( e B ℏ / m c ) ( n + 1 / 2 ) E_{k,n} = \hbar^2k^2/2m + (eB\hbar/mc)(n+1/2) Ek,n=2k2/2m+(eB/mc)(n+1/2) 其中, ℏ k \hbar k k 是z方向的pz的本征值。

第三章 角动量

  1. 对spin-1粒子求: a. S z ( S z + ℏ ) ( S z − ℏ ) S_z(S_z+\hbar)(S_z-\hbar) Sz(Sz+)(Sz)的矩阵元 b. S x ( S x + ℏ ) ( S x − ℏ ) S_x(S_x+\hbar)(S_x-\hbar) Sx(Sx+)(Sx)的矩阵元

  2. spin-1/2 中为S,spin-1中为J,求 [ S i , S j ] [S_i,S_j] [Si,Sj] [ J i , J j ] [J_i, J_j] [Ji,Jj]

  3. 对于spin-1/2 求 D ( n , ϕ ) D(n,\phi) D(n,ϕ) 的矩阵元表示

  4. L x L_x Lx, L y L_y Ly, L x 2 L_x^2 Lx2 L y 2 L_y^2 Ly2 ∣ l m ⟩ |lm\rangle lm中的本征值

第四章 对称性

  1. 求对易性: a. T d T_d Td T d ′ T_{d'} Td; b. D ( n , ϕ ) D(n,\phi) D(n,ϕ) D ( n ′ , ϕ ′ ) D(n',\phi') D(n,ϕ); c. T d T_d Td π \pi π d. D ( n , ϕ ) D(n,\phi) D(n,ϕ) π \pi π

  2. 求空间反演下的: x , p , J , x ⋅ p , S ⋅ x , L ⋅ S x, p, J, x\cdot p, S\cdot x, L\cdot S x,p,J,xp,Sx,LS

  3. 求时间反演下的: x , p , J x, p, J x,p,J 以及 ∣ j , m ⟩ |j,m\rangle j,m

    x → x x\rightarrow x xx, p → − p p\rightarrow -p pp, J → − J J\rightarrow -J JJ, ∣ j , m ⟩ → i 2 j ∣ j , − m ⟩ |j,m\rangle \rightarrow i^{2j}|j,-m\rangle j,mi2jj,m

  4. ∣ n ⟩ |n\rangle n 是宇称的本征态,证明 ⟨ x 2 ⟩ > ∣ ⟨ x ⟩ ∣ 2 \langle x^2\rangle \gt |\langle x\rangle|^2 x2>x2

    解: 因为 对于宇称的本征态 有 ⟨ x ⟩ = 0 \langle x\rangle=0 x=0

  5. 证明奇数个电子的体系在静电场中的能级总是二重简并的。

    证明:

    1. 静电场是x的函数,因为 [ Θ , x ] = 0 [\Theta, x]=0 [Θ,x]=0 所以有 [ Θ , H ] = 0 [\Theta, H]=0 [Θ,H]=0 所以对于 ∣ n ⟩ |n\rangle n 是H的本征态,则 Θ ∣ n ⟩ \Theta|n\rangle Θn 一定也是H的本征态。
    2. Θ ∣ j m ⟩ = i 2 j ∣ j , − m ⟩ \Theta|jm\rangle =i^{2j}|j,-m\rangle Θjm=i2jj,m 因为对于奇数个电子,j总是half-integer,所以2j为奇数,所以 Θ ∣ n ⟩ = − ∣ n ⟩ \Theta|n\rangle = -|n\rangle Θn=n ∣ n ⟩ |n\rangle n 不同态
  6. 用交换积分解释洪特Hund规则。

    解:多电子体系总要满足交换反对称,因此,自选平行时,空间波函数交换反对称,有相互远离的趋势,电子间库伦排斥降低;自选反平行时,空间波函数交换对称,相互靠近,库伦排斥升高。

  7. V ( x ) = V ( − x ) V(x)=V(-x) V(x)=V(x) ⟨ n ∣ x ∣ n ⟩ \langle n|x|n\rangle nxn 以及 ⟨ n ∣ L ∣ n ⟩ \langle n|L|n\rangle nLn

  8. 两全同粒子处于 ϕ A \phi_A ϕA ϕ B \phi_B ϕB 分别求spin-0 和 spin-1/2在x处找到一个粒子的机率

第五章 微扰

  1. 已知 H = ( E 1 0 λ Δ λ Δ E 2 0 ) H = \begin{pmatrix} E_1^0&\lambda \Delta\\\lambda \Delta& E_2^0\end{pmatrix} H=(E10λΔλΔE20) (1) 精确求解E1和E2 (2) 若 λ \lambda λ很小,E1和E2 精确到2阶 (3) 若 λ \lambda λ 很大,两态几乎兼并,等价于(1)中的兼并情况

  2. 用试探函数 ψ ~ ( x ) = exp ⁡ ( − β ∣ x ∣ ) \tilde{\psi}(x)=\exp(-\beta|x|) ψ~(x)=exp(βx) 求一维谐振子的基态能量

    解: H = − ℏ 2 2 m ∂ x 2 + 1 2 m ω 2 x 2 H = \frac{-\hbar^2}{2m}\partial_x^2+\frac{1}{2}m\omega^2x^2 H=2m2x2+21mω2x2,
    H ~ = ⟨ ψ ∣ ~ H ∣ ψ ~ ⟩ ⟨ ψ ~ ∣ ψ ~ ⟩ = ℏ 2 2 m β 2 + m ω 2 4 β 2 \begin{aligned} \tilde{H} &= \frac{\langle \tilde{\psi|}H|\tilde{\psi} \rangle}{\langle \tilde{\psi}|\tilde{\psi} \rangle}\\ &= \frac{\hbar^2}{2m}\beta^2 + \frac{m\omega^2}{4\beta^2} \end{aligned} H~=ψ~ψ~ψ~Hψ~=2m2β2+4β2mω2
    所以 ∂ H ~ / ∂ β = 0 \partial \tilde{H}/\partial\beta =0 H~/β=0, 得到 β 2 = m ω / 2 ℏ \beta^2=m\omega/\sqrt2\hbar β2=mω/2 带入得到 E ~ = ℏ ω / 2 \tilde{E} = \hbar\omega/\sqrt2 E~=ω/2

  3. H 0 = ( E 1 0 E 2 0 ) H_0 = \begin{pmatrix} E_1^0&\\&E_2^0\end{pmatrix} H0=(E10E20), 微扰为: V = ( λ cos ⁡ ω t λ cos ⁡ ω t ) V = \begin{pmatrix} &\lambda\cos\omega t\\\lambda\cos\omega t&\end{pmatrix} V=(λcosωt

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值