01背包两种经典解法(以及找出最优解组合)very详细 -Bone Collector

本文探讨了一个经典的计算机科学问题——背包问题,通过一个具体的例子,详细介绍了如何使用动态规划算法来解决这个问题,包括如何构建状态转移方程,以及如何通过代码实现这一算法。文章还提供了两种不同的代码实现方式,并解释了它们之间的差异。
摘要由CSDN通过智能技术生成

Problem Description

Many years ago , in Teddy’s hometown there was a man who was called “Bone Collector”. This man like to collect varies of bones , such as dog’s , cow’s , also he went to the grave …
The bone collector had a big bag with a volume of V ,and along his trip of collecting there are a lot of bones , obviously , different bone has different value and different volume, now given the each bone’s value along his trip , can you calculate out the maximum of the total value the bone collector can get ?

Input

The first line contain a integer T , the number of cases.
Followed by T cases , each case three lines , the first line contain two integer N , V, (N <= 1000 , V <= 1000 )representing the number of bones and the volume of his bag. And the second line contain N integers representing the value of each bone. The third line contain N integers representing the volume of each bone.

Output

One integer per line representing the maximum of the total value (this number will be less than 231).

Sample Input

1
5 10
1 2 3 4 5
5 4 3 2 1

Sample Output

14

许多年前,在泰迪的家乡有一个被称为“骨收集者”的人。这个人喜欢收集各种各样的骨头,比如狗的,牛的,他也去了坟墓…。
骨头收集者有一大袋V的体积,在他的收集之旅中有很多骨头,很明显,不同的骨头有不同的价值和不同的体积,现在给出每一块骨头沿着他的行程的价值,你能计算出骨头收集者能得到的总价值的最大值吗?。

输入。

第一行包含整数T,即案例数。
其次是T例,每例三行,第一行包含两个整数N,V,(N<;=1000,V<;=1000)表示骨数和包的体积。第二行包含N个整数,表示每个骨骼的值。第三行包含N个整数,表示每个骨骼的体积。

输出量。

每行一个整数,表示总值的最大值(此值将小于231)。

样本输入。

一。
5、10。
1 2 3 4 5。
5 4 3 2 1。

样本输出。

14
简单代码:

#include<bits/stdc++.h>
using namespace std;

long long int dp[1005], a[1005], b[1005];
int main()
{
	int t;
	cin >> t;
	while (t--)
	{
		long long int n, v;
		cin >> n >> v;
		memset(dp, 0, sizeof(dp));
		for (int i = 1; i <= n; i++)cin >> a[i];
		for (int i = 1; i <= n; i++)cin >> b[i];          
		for (int i = 1; i <= n; i++)                            //以下三列则是精髓
			for (int j = v; j >= b[i]; j--)
				dp[j] = max(dp[j], dp[j - b[i]] + a[i]);
		cout << dp[v] << endl;

	}
}

长一点的代码。。有人会问,丫丫丫,怎么看到的是关键三行的第一行应该是逆序(即i从n后边开始)但注意,我的输入比较特殊,我从1开始输入的,初始化为0的行为第一行因此我正序做就ok拉!!!

#include<bits/stdc++.h>
using namespace std;

long long int dp[1005][1005], a[1005], b[1005];
int main()
{
	int t;
	cin >> t;
	while (t--)
	{
		long long int n, v;
		cin >> n >> v;
		memset(dp, 0, sizeof(dp));
		for (int i = 1; i <= n; i++)cin >> a[i];     
		for (int i = 1; i <= n; i++)cin >> b[i];
		for (int i = 1; i <= n; i++) 
		 //以下三列与上面的区别            
			for (int j = 0; j <= v; j++)               
			//这个j不能改成1,改成1AC不了,至于为啥,我也没搞清楚,我觉得是可以的,如果0体积有价值我也无话可说,所以0最保险,或者用上面的优化代码!!!!!
			{
				if (j < b[i])dp[i][j] = dp[i - 1][j];
				else dp[i][j] = max(dp[i - 1][j], dp[i-1][j - b[i]] + a[i]);
			}
		cout << dp[n][v] << endl;

	}
}

找出最优解了,但里面装的是啥,我想确定咋办捏,然后找回去憋

#include<bits/stdc++.h>
using namespace std;

long long int dp[1005][1005], a[1005], b[1005], item[1005] = { 0 };

void FindWhat(int i, int j)//寻找解的组成方式
{
	if (i >= 0)
	{
		if (dp[i][j] == dp[i - 1][j])//相等说明没装
		{
			item[i] = 0;//全局变量,标记未被选中
			FindWhat(i - 1, j);
		}
		else if (j - b[i] >= 0 && dp[i][j] ==dp[i - 1][j - b[i]] + a[i])
		{
			item[i] = 1;//标记已被选中
			FindWhat(i - 1, j - b[i]);//回到装包之前的位置
		}
	}
}
int main()
{
	int t;
	memset(dp, 0, sizeof(dp));
	cin >> t;
	while (t--)
	{
		long long int n, v;
		cin >> n >> v;
		for (int i = 1; i <= n; i++)cin >> a[i];
		for (int i = 1; i <= n; i++)cin >> b[i];
		for (int i = 1; i <= n; i++)
			for (int j = 1; j <= v; j++)
			{
				if (j < b[i])dp[i][j] = dp[i - 1][j];
				else dp[i][j] = max(dp[i - 1][j], dp[i-1][j - b[i]] + a[i]);
			}
		cout << dp[n][v] << endl;

		FindWhat(n, v);
		for (int i = 1; i <= n; i++)if (item[i])cout << a[i] << b[i] << endl;

	}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

wujiekd

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值