scaler.fit(),scaler.transform(),StandardScaler

  • fit():计算并存储缩放参数(如均值、标准差、最小值、最大值等),但不改变数据本身。
  • transform():根据 fit() 计算出的参数对数据进行实际的缩放转换。

常见的使用模式

通常,fit()transform() 是一起使用的,典型的步骤如下:

  1. 在训练集上调用 fit():使用训练集数据计算缩放参数。
  2. 在训练集上调用 transform():将训练集数据进行缩放。
  3. 在验证集或测试集上调用 transform():使用训练集上计算的参数对验证集或测试集进行缩放,而不会再调用 fit()

这种流程确保了在验证和测试阶段,数据缩放时使用的是与训练阶段相同的标准,避免数据泄露或引入偏差。

Sklearn之数据预处理——StandardScaler_standard scaler-CSDN博客

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值