星座图(Constellation Diagram)概述
星座图是一种在通信系统中用于可视化调制方式的图形,展示了不同符号在复平面(即 I-Q 平面)上的位置。每个星座点表示一种可能的信号状态或符号。星座图通过显示信号的复数坐标(实部和虚部)来直观地表现调制方式。
星座点的复数坐标:
星座图中的每个点通常表示一个调制符号,其复数坐标形式为 I + jQ,其中:
I 是实部(In-phase),通常对应信号的实轴(水平轴)。
Q 是虚部(Quadrature),通常对应信号的虚轴(垂直轴)。
j 是虚数单位,表示复数的虚部。
星座点的实部和虚部:
实部:表示信号在 I 轴上的投影,通常对应载波信号的实相位部分。
虚部:表示信号在 Q 轴上的投影,通常对应载波信号的虚相位部分。
星座点的 IQ 分量:
IQ 分量是星座点的复数表示,可以拆解为:
I(In-phase):信号的实部,通常表示载波的同相分量。
Q(Quadrature):信号的虚部,表示载波的正交分量。
常见调制方式的星座图及其解读
BASK(Binary Amplitude Shift Keying):BASK(二进制移幅键控) :
调制方式:二进制幅度调制,基于信号的幅度变化表示 0 和 1。
星座图:在 BASK 中,只有两个可能的信号点,分别对应于两个不同的幅度值。
星座点:在复平面上,BASK 通常具有两个星座点,分别位于实轴(I 轴)上,例如 (A, 0) 和 (-A, 0),其中 A 是正的幅度值。
示意图:
对应于两种幅度信号: 0 和 1。
星座图上两个点,分别在 I 轴的两个位置。
星座图:
(A, 0) 和 (-A, 0)
BPSK(Binary Phase Shift Keying):BPSK(二进相移键控) :
调制方式:二进制相位键控,基于载波的相位变化表示 0 和 1。
星座图:BPSK 具有两个星座点,分别位于复平面的实轴两侧,例如 (A, 0) 和 (-A, 0)。
示意图:
星座图上两个点,分别在 I 轴的正负两侧,表示 0 和 1。
通过改变相位来表示 0 和 1。
星座图:
(A, 0) 和 (-A, 0)
QPSK(Quadrature Phase Shift Keying):QPSK(正交相移键控) :
调制方式:四进制相位键控,使用 4 个不同的相位表示 2 位信息。
星座图:QPSK 具有四个星座点,分别位于复平面的四个象限,通常是 (A, A)、(A, -A)、(-A, A) 和 (-A, -A),每个点代表 2 位二进制信息。
示意图:
星座图上的 4 个点,分别位于复平面的 4 个象限(第一、第二、第三、第四象限)。
每个点的相位对应 2 位信息,通常 45°、135°、225° 和 315°。
星座图:
(A, A), (A, -A), (-A, A), (-A, -A)
QAM(Quadrature Amplitude Modulation):QAM(正交调幅) :
调制方式:正交幅度调制,结合了幅度和相位调制。通过同时调节信号的幅度和相位,可以表示多个比特的信息。
星座图:QAM 可以有多个星座点,取决于调制阶数 M。
例如:
16-QAM:16 个星座点,通常在复平面中形成 4x4 网格,包含 4 行和 4 列的点。
64-QAM:64 个星座点,通常形成 8x8 网格,包含 8 行和 8 列的点。
星座点:QAM 星座点的实部和虚部对应信号在 I 轴和 Q 轴上的幅度。每个点代表不同的幅度组合,不同的符号。
示意图:
例如,16-QAM 的星座图包含 4 行和 4 列,四个幅度值组合在 I 和 Q 轴上形成 16 个点。
例如 16-QAM 的星座图:
星座图:
(A, A), (A, 3A), (3A, A), (3A, 3A) ... (每个点代表不同的二进制组合)
复数坐标、实部和虚部的关系
复数坐标:星座图中的每个点是一个复数,通常表示为 I + jQ,其中:
I 是实部,表示信号的同相分量(In-phase component)。
Q 是虚部,表示信号的正交分量(Quadrature component)。
复数形式可以直观地表示信号的相位和幅度。
实部和虚部:
实部(I):对应复平面上的水平轴,通常表示调制信号的同相分量。
虚部(Q):对应复平面上的垂直轴,通常表示调制信号的正交分量。
IQ 分量:
-
- 星座点的 IQ 分量 指的是信号的复数表示中的 I(实部) 和 Q(虚部)。每个星座点在 I-Q 平面上都有一个具体的位置,这个位置由信号的 实部 和 虚部 决定。
最后
- BASK 和 BPSK 的星座图点数较少(通常是 2 个),分别对应信号幅度或相位的变化。
- QPSK 的星座图有 4 个点,每个点对应 2 位二进制信息,通过相位变化来表示。
- QAM(如 16-QAM 或 64-QAM)通过同时调整信号的幅度和相位,可以表示更多的比特信息,星座图点数更高,通常形成矩阵状布局,点之间的距离可以通过调整幅度或相位间隔来控制。
这些调制方式的星座图帮助我们在复平面上直观地理解和实现不同的调制方案,并在信号接收端通过解调过程恢复原始数据。