-
符号能量与比特能量的关系
每个QAM符号携带 k = log 2 ( M ) k = \log_2(M) k=log2(M)比特信息,因此符号能量 E s E_s Es是比特能量 E b E_b Eb的 k k k倍:
E s = k ⋅ E b E_s = k \cdot E_b Es=k⋅Eb
对应的信噪比满足:
E s N 0 = k ⋅ E b N 0 \frac{E_s}{N_0} = k \cdot \frac{E_b}{N_0} N0Es=k⋅N0Eb -
分贝转换
分贝(dB)是功率比的对数形式,因此:
E s N 0 ( dB ) = 10 log 10 ( k ) + E b N 0 ( dB ) \frac{E_s}{N_0} \ (\text{dB}) = 10 \log_{10}(k) + \frac{E_b}{N_0} \ (\text{dB}) N0Es (dB)=10log10(k)+N0Eb (dB)
这一步将用户输入的 E b / N 0 E_b/N_0 Eb/N0(每比特信噪比)转换为仿真中实际需要的 E s / N 0 E_s/N_0 Es/N0(每符号信噪比),确保噪声功率的计算与符号能量匹配。 -
实际应用
在AWGN信道模型中,噪声方差的计算依赖于 E s / N 0 E_s/N_0 Es/N0。若直接使用 E b / N 0 E_b/N_0 Eb/N0而未转换,会导致噪声功率错误,最终符号错误率(SER)或误码率(BER)偏离理论值。
总结:该转换保证了仿真的物理一致性,正确反映了符号能量与噪声功率的关系,使误码率仿真结果与理论分析一致。