多任务学习或联合任务场景下的数据集配置

  1. 类与上下文定位
    • 发生在__init__构造函数执行期间(初始化阶段)

  2. 关系标签列表解析

self.relation_label_list = ['0', '1']

任务类型:二分类关系判断任务
应用场景:实体间关系存在性检测(如知识图谱关系分类)
标签含义
• ‘0’ → 无关系/负样本
• ‘1’ → 存在关系/正样本
典型用法:在__getitem__中通过self.relation_label_list.index(label_str)转换为数值张量

  1. 情感标签列表解析
self.sentiment_label_list = ['0', '1', '2']

任务类型:三分类情感分析任务
标签体系
• ‘0’ → 负面情感 (Negative)
• ‘1’ → 中性情感 (Neutral)
• ‘2’ → 正面情感 (Positive)
多任务提示:可能同时进行关系检测和情感分析(如电商评论分析:识别产品特征关系+情感极性)

  1. 技术实现细节
    标签存储形式:字符串形式存储,通常在数据预处理时转换为整型
    映射必要性:为PyTorch的CrossEntropyLoss等损失函数提供类别索引
    扩展性设计:通过列表维护标签顺序,支持动态添加新标签
    典型转换逻辑
# 关系标签转换示例
relation_labels = torch.tensor(
    [self.relation_label_list.index(rel) for rel in raw_relations],
    dtype=torch.long
)

# 情感标签转换示例
sentiment_labels = torch.tensor(
    [self.sentiment_label_list.index(sent) for sent in raw_sentiments],
    dtype=torch.long
)
  1. 多任务架构关联
    模型输出层
    • 关系分类头:输出维度2(对应2个关系类别)
    • 情感分类头:输出维度3(对应3种情感状态)
    数据样本结构:每个样本可能包含:
{
    "text": "这款手机续航强但拍照差",
    "relation": "1",       # 存在产品属性关系
    "sentiment": "0"       # 整体负面评价
}

该设计支持灵活的多任务处理,通过分离标签列表实现不同任务的独立配置,适用于需要同时处理多种标注信息的复杂NLP场景。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值