STM32CubeIDE嵌入式开发入门到入坟-软件篇-3、GPIO(IO)输入与良好的工程结构

STM32CubeIDE嵌入式开发入门到入坟-软件篇-2、新建工程与GPIO(IO)口配置

续上一篇讲了IO的输出,这节我们来学习IO的输入以及建立一个良好的工程代码结构。

【STM32CubeIDE整理代码与目录结构以及问题】

一、GPIO(IO)口输入。

        接着上一篇的工程,打开上一篇工程配置界面准备配置IO。先看硬件,我这里有个按键对应的IO是PC13,默认状态是外部下拉电阻将电平拉低,按键按下电平被拉高。
早到你所使用的按键对应的IO,在配置界面找到并配置为输入模式。
输入自定义名称(用默认名称也是可以的)。
这里我们配置IO既不上拉也不下拉,因为外部硬件已经下拉了,STM32内部上下拉电阻典型值40KΩ,我们计算一下这里配置为下拉也可已,但是注意一般硬件的上下拉电阻不能太小,1K以上合适,太小可能会导致另一个电平拉高或拉低不了。
IO输入电平>0.7VDD电平为高,小于0.3VDD为低。中间电平状态就不可预测了。
好了,我们点击重新构建代码。
我们所有的自定义名称宏定义都在main.h中。
        构建完成会发现我们上次写的代码消失了,这就是因为没有写在BEGIN与END之间的后果。如果发现自己很不巧没有写在里面,可以Ctrl+Z恢复。
读取引脚电平的函数:
HAL_GPIO_ReadPin(GPIOx, GPIO_Pin);
        我们Ctrl+鼠标左键可以跳转带声明与实现,一路跟踪可以发现这个函数返回值是一个枚举定义的值。
/**
* @brief GPIO Bit SET and Bit RESET enumeration
*/
typedef enum
{
    GPIO_PIN_RESET = 0,
    GPIO_PIN_SET
}GPIO_PinState;
        返回值有:GPIO_PIN_RESET = 0与GPIO_PIN_SET=1两个。我们写个if语句来判断我们的按键状态,并控制我们上一篇的LED灯。0对应False(假),非零即正负数为True(真)。在while循环中写入代码:
if(HAL_GPIO_ReadPin(Key_GPIO_Port, Key_Pin)){                    //按下按键
    HAL_GPIO_WritePin(LED_GPIO_Port, LED_Pin, GPIO_PIN_SET);     //亮
}else{
    HAL_GPIO_WritePin(LED_GPIO_Port, LED_Pin, GPIO_PIN_RESET);    //灭
}
下载程序。当我们按下按键灯亮,放开按键灯灭。下
那怎么实现按一下LED翻转一下状态呢?
反转IO口电平的函数:
HAL_GPIO_TogglePin(GPIOx, GPIO_Pin);
用if判断按键,在while循环中写入代码:
if(HAL_GPIO_ReadPin(Key_GPIO_Port, Key_Pin)){        //按下按键
	HAL_Delay(50);                                    //延时防止按下按键的抖动误判
	HAL_GPIO_TogglePin(LED_GPIO_Port, LED_Pin);        //翻转LED
	while(HAL_GPIO_ReadPin(Key_GPIO_Port, Key_Pin));    //等待按键松开
}
按键抖动厉害,led翻转不稳定可以加长延时时间改善。
编译下载即可控制了,不用while等待也可以使用变量作为一个标志来判断控制等,同学们多开动脑筋多尝试额。

二、良好的工程结构

        在实际编写代码的过程当不可能将所有代码都写在main.c文件里,当然实际你将无数代码写在一行都行。但是咋看啊,自己也不方便管理。所以有个良好的结构是必须的。
        我们先在Core文件夹下建立一个跟我们工程相关的名称,这里我新建MyGPIO。
        这里我们将这个文件夹作为我们自己编写代码的总文件夹,再在里面进行分类创建文件夹和代码。我们给我们的按键和LED灯创建一个文件夹。然后再新建相关功能文件,将代码模块化。
创建led.h    led.c    key.h    key.c文件
这里例子将功能自己使用函数封装起来,方便使用管理。

led.h 文件:
#include "stm32f7xx.h"

//宏定义:就是编译的时候会将所有包含这个头文件的ON替换为1编译(OFF同)
#define    ON    1
#define    OFF    0

void led(uint8_t state);    //声明LED控制函数
led.c 文件:
#include "led.h"
#include "main.h"

void led(uint8_t state){    //控制LED(参数传入ON或者OFF)
    if(state){
        HAL_GPIO_WritePin(LED_GPIO_Port, LED_Pin, GPIO_PIN_SET);        //亮
    }else{
        HAL_GPIO_WritePin(LED_GPIO_Port, LED_Pin, GPIO_PIN_SET);        //灭
    }
}
key.h 文件:
#include "stm32f7xx.h"

uint8_t readKeyState();        //声明读取按键电平自己的封装函数
key.c 文件:
#include "key.h"
#include "main.h"

uint8_t readKeyState(){
    return        HAL_GPIO_ReadPin(Key_GPIO_Port, Key_Pin);        //返回读取到的电平
}
在main.c包含我们写的两个头文件
再让工程包含扫描我们自己编写代码的文件夹:
或者创建文件夹的时候使用下图方式:
已经创建好的文件夹可以使用下图方式添加路径:
好了确认应用,编译没有错误。我们就可以在mian.c使用我们刚刚封装好的函数了。
led(ON);    //LED亮
led(OFF);    //LED灭
readKeyState();    //得到Key按键电平
好了我们IO口的学习就到此结束。后面将学习STM32外设了。

### 三、动态规划(DP)从入门到精通详解 动态规划是一种解决具有重叠子问题和最优子结构问题的算法设计策略。其核心在于将问题拆解为更小的子问题,并通过记录已解决的子问题结果来避免重复计算,从而提高效率。在CSP-S复赛中,动态规划是高频考点,尤其以线性DP和背包类DP为主,近五年中DP题型出现了三次,足见其重要性[^2]。 #### 基础概念建模方法 动态规划的建模通常包括**状态定义、状态转移方程、边界条件和状态转移顺序**四个部分。状态定义应能准确描述当前阶段的最优解情况,而状态转移方程则描述了如何从已知状态推导出新状态。 例如,在斐波那契数列中,状态定义为 `dp[i]` 表示第 `i` 项的值,状态转移方程为: ``` dp[i] = dp[i - 1] + dp[i - 2] ``` 边界条件为 `dp[0] = 0`, `dp[1] = 1`。这种线性递推结构是动态规划最基础的形式之一。 #### 常见DP类型典型模型 1. **背包类DP** 包括01背包、完全背包、多重背包等。例如01背包问题中,每个物品只能选一次,状态定义为 `dp[i][j]` 表示前 `i` 个物品在容量 `j` 下的最大价值。状态转移方程为: ``` dp[i][j] = max(dp[i-1][j], dp[i-1][j - w[i]] + v[i]) ``` 其中 `w[i]` 是物品重量,`v[i]` 是其价值。使用滚动数组可以优化空间复杂度至一维: ```cpp int dp[1005]; for (int i = 1; i <= n; i++) { for (int j = W; j >= w[i]; j--) { dp[j] = max(dp[j], dp[j - w[i]] + v[i]); } } ``` 2. **线性DP** 如最长递增子序列(LIS)、最长公共子序列(LCS)等。LCS问题中,状态 `dp[i][j]` 表示字符串A的前 `i` 个字符和字符串B的前 `j` 个字符的最长公共子序列长度。状态转移如下: ``` if A[i] == B[j], dp[i][j] = dp[i-1][j-1] + 1 else dp[i][j] = max(dp[i-1][j], dp[i][j-1]) ``` 3. **区间DP** 适用于合并类问题,如石子合并。状态 `dp[i][j]` 表示合并第 `i` 到第 `j` 堆石子的最小代价。状态转移需要枚举中间分割点 `k`: ``` dp[i][j] = min(dp[i][k] + dp[k+1][j] + sum[i][j]) ``` 4. **树形DP** 在树结构上进行状态转移,如求树的最大独立集、树的直径等问题。状态通常定义为 `dp[u]` 表示以节点 `u` 为根的子树中的最优解。 5. **数位DP** 处理数字每一位的状态,常用于统计满足某种性质的数字个数。如统计 `[L, R]` 区间内不含连续1的数字个数。 6. **插头DP(轮廓线DP)** 一种高级DP技巧,适用于处理网格路径、连通性等问题。虽然实现复杂,但能解决传统方法难以建模的问题[^2]。 #### 优化技巧空间压缩 - **滚动数组**:将二维状态压缩为一维,适用于状态转移仅依赖前一阶段的情况。 - **单调队列优化**:适用于滑动窗口内的最大值/最小值问题,如多重背包的单调队列优化。 - **斜率优化**:适用于某些特定形式的转移方程,如 `dp[i] = min(dp[j] + a[i] * b[j])`,可将复杂度从 $O(n^2)$ 优化到 $O(n)$。 - **矩阵快速幂**:适用于线性递推关系,如斐波那契数列的快速幂优化。 #### 学习路径训练建议 1. **基础巩固阶段** 掌握背包问题、LCS、LIS、数字三角形等基础模型,理解状态定义转移方式。 2. **专题训练阶段** 深学习区间DP、树形DP、数位DP等专题,熟悉其建模思路典型题型。 3. **真题实战阶段** 利用历年CSP-S复赛真题进行训练,如2021年的“括号序列”问题,结合动态规划贪心思想,提升综合建模能力。 4. **进阶提升阶段** 挑战高级DP技巧,如插头DP、斜率优化等,掌握复杂状态设计高效转移策略。 #### 示例代码:最长递增子序列(LIS) ```cpp int dp[1005]; int a[1005]; // 输入序列 int solve(int n) { int res = 0; for (int i = 1; i <= n; i++) { dp[i] = 1; // 初始值为1,即a[i]自身 for (int j = 1; j < i; j++) { if (a[j] < a[i]) { dp[i] = max(dp[i], dp[j] + 1); } } res = max(res, dp[i]); } return res; } ``` ---
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值