数据分析11--XGboost原理及其实现(python代码)

XGBoost是一种基于梯度提升树的集成学习模型,常用于回归和分类问题。它通过组合多个弱学习器,如决策树,利用梯度提升策略逐步优化模型。文章介绍了XGBoost的核心原理,包括树的结构、目标函数、防止过拟合的策略,并提供了使用Python的sklearn和xgboost库进行模型训练和预测的示例。在Kaggle等竞赛中,XGBoost表现出色,且广泛应用在工业界。
摘要由CSDN通过智能技术生成

XGBoost是一种基于梯度提升树(Gradient Boosting Tree)算法的集成学习模型,它可以用于回归和分类问题。XGBoost在Kaggle等机器学习竞赛中表现出色,并且被广泛应用于工业界。

XGBoost的核心原理是将多个弱学习器(例如决策树)进行加权组合,得到一个更强的学习器。具体来说,它采用梯度提升的思想,每次迭代都在拟合一个新的弱学习器,以尽量减少上一轮迭代的残差(误差),从而不断提升整体模型的性能。

XGBoost的实现主要涉及以下几个方面:

树的结构:XGBoost使用CART树作为基学习器,每个节点的分裂方式是基于最大增益(最大化目标函数)来确定的。
目标函数:XGBoost的目标函数由两部分组成,一部分是代表模型的预测值,另一部分是正则化项(L1和L2正则化)用于防止过拟合。
分裂节点选择:对于每个节点,XGBoost会尝试所有可能的特征进行分裂,并选择最优的特征和分裂点。
生成新的树:每次生成新的树时,XGBoost会计算每个样本的权重,以及每个特征的重要性,并根据这些信息来生成新的树。
防止过拟合:XGBoost使用L1和L2正则化来控制模型的复杂度,同时还可以设置学习率(learning rate)和每个树的最大深度等参数,以防止过拟合。
XGBoost在实现中还使用了一些技巧来提高模型的性能,例如特征子采样(feature subsampling)、样本子采样(sample subsampling)和加权的样本采样(weighted subsampling)。这些技巧可以帮助减少过拟合、提高泛化能力和加速模型的训练过程。


import xgboost as xgb
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

# 加载数据
iris = load_iris()
X = iris.data
y = iris.target

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

# 转换数据格式为DMatrix
dtrain = xgb.DMatrix(X_train, label=y_train)
dtest = xgb.DMatrix(X_test, label=y_test)

# 定义参数
params = {
    'max_depth': 3,  # 树的最大深度
    'eta': 0.1,  # 学习率
    'objective': 'multi:softmax',  # 目标函数,多分类问题
    'num_class': 3  # 类别数
}

# 训练模型
num_round = 50  # 迭代次数
model = xgb.train(params, dtrain, num_round)

# 预测
y_pred = model.predict(dtest)

# 计算准确率
acc = accuracy_score(y_test, y_pred)
print('Accuracy:', acc)

更多内容请见:微信公众号:调度与优化算法的集结地

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
以下是一个基于pyswarms库和scikit-learn库的XGBoost多分类交叉验证的Python代码示例: ```python import numpy as np import pandas as pd import xgboost as xgb from sklearn.datasets import load_iris from sklearn.model_selection import cross_val_score, GridSearchCV from pyswarms.single.global_best import GlobalBestPSO # 加载数据集 data = load_iris() X = data.data y = data.target # 定义PSO适应度函数 def pso_fit(params, X, y): params = params.astype(int) clf = xgb.XGBClassifier(max_depth=params[0], learning_rate=params[1], n_estimators=params[2], min_child_weight=params[3], subsample=params[4], colsample_bytree=params[5], gamma=params[6]) score = cross_val_score(clf, X, y, cv=5, scoring='accuracy').mean() return 1 - score # 设置PSO参数范围 pso_options = {'c1': 0.5, 'c2': 0.3, 'w': 0.9} # 设置XGBoost模型参数范围 params_range = (np.array([3, 0, 50, 1, 0.1, 0.1, 0]), np.array([10, 1, 1000, 10, 1, 1, 5])) # 进行PSO优化 optimizer = GlobalBestPSO(n_particles=10, dimensions=7, options=pso_options, bounds=params_range) best_params = optimizer.optimize(pso_fit, iters=10, X=X, y=y) # 定义XGBoost分类器 clf = xgb.XGBClassifier(max_depth=best_params[0], learning_rate=best_params[1], n_estimators=best_params[2], min_child_weight=best_params[3], subsample=best_params[4], colsample_bytree=best_params[5], gamma=best_params[6]) # 使用GridSearchCV函数进行模型参数调优 param_grid = {'max_depth': range(3, 11), 'learning_rate': [0.1, 0.01], 'n_estimators': range(50, 1001, 50), 'min_child_weight': range(1, 11), 'subsample': np.arange(0.1, 1.1, 0.1), 'colsample_bytree': np.arange(0.1, 1.1, 0.1), 'gamma': np.arange(0, 5, 0.5)} grid_search = GridSearchCV(clf, param_grid, cv=5, scoring='accuracy') grid_search.fit(X, y) # 输出最优模型参数和交叉验证分数 print('Best parameters:', grid_search.best_params_) print('Cross validation score:', grid_search.best_score_) ``` 注意,这里的PSO适应度函数返回的是1-score,因为pyswarms库的优化目标是最小化适应度函数。同时,为了避免参数数值类型错误,需要将参数向量转换为整数类型。最后,这里使用GridSearchCV函数进行模型参数调优,可以得到最优的XGBoost模型参数和交叉验证分数。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值