XGBoost代码示例-Python

xgboost是一种基于梯度提升的算法,适用于大规模数据集的分类、回归和聚类任务。通过优化损失函数,它可以自动找到最佳特征和分裂点。提供的代码示例展示了如何使用xgboost进行多类分类任务的训练和预测。
摘要由CSDN通过智能技术生成

什么是xgboost?

xgboost是一种基于梯度的机器学习算法,它能够在大规模数据集上做出准确、快速的决策。 以下是xgboost算法可以用来做的事情:

  1. 分类:当xgboost用于分类时,它会通过交叉验证来确定最佳的分裂点,并根据每个叶子节点的损失值来决定是否将其分裂。分类任务需要标注数据以便进行分类,并且需要选择正确的分裂点,以便在不同的数据集上获得最佳的性能。
  2. 回归:当xgboost用于回归时,它会通过计算损失函数的值来确定最佳的特征和阈值,并根据每个叶子节点的损失值来决定是否将其分裂。回归任务需要预先标注数据以便进行回归,并且需要选择正确的特征和阈值,以便在不同的数据集上获得最佳的性能。
  3. 聚类:当xgboost用于聚类时,它会通过计算相似度来将数据分为不同的组。聚类任务需要进行数据聚类以便进行可视化或进一步分析,并且需要选择正确的相似度度量和分组方法,以便在不同的数据集上获得最佳的性能。

总之,xgboost算法具有广泛的应用场景,可以用于分类、回归、聚类等各种机器学习任务。

 代码示例

from xgboost import XGBRegressor
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split

# 加载数据集
iris = load_iris()
X, y = iris.data, iris.target

# 拆分数据集为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)


# 训练模型
bst = XGBRegressor(objective="multi:softmax", num_class=3, max_depth=3, eta=0.1, learning_rate_decay=0.9, subsample=0.8,
                   colsample_bytree=0.8, min_child_weight=1)
bst.fit(X_train, y_train)

# 预测测试集
y_pred = bst.predict(X_test)

# 输出模型性能指标
print("Accuracy:", bst.score(X_test, y_test))
params = {  
    'objective': 'multi:softmax',  # 多分类任务  
    'num_class': 3,  # 分类数  
    'eta': 0.1,  # 学习率  
    'max_depth': 3,  # 决策树深度  
    'learning_rate_decay': 0.9,  # 学习率衰减率  
    'subsample': 0.8,  # 特征抽样比例  
    'colsample_bytree': 0.8,  # 树的特征抽样比例  
    'min_child_weight': 1  # 子节点权重随机值  
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值