XGBOOST算法Python实现(保姆级)

摘要

**** XGBoost算法(eXtreme Gradient
Boosting)在目前的Kaggle、数学建模和大数据应用等竞赛中非常流行。本文将会从XGBOOST算法原理、Python实现、敏感性分析和实际应用进行详细说明。

目录

0 绪论

一、材料准备

二、算法原理

三、算法Python实现

3.1 数据加载

3.2 将目标变量的定类数据分类编码

3.3 将数据分为训练数据和测试数据

3.4训练XGBOOST模型

3.5 测试模型

3.6 输出模型的预测混淆矩阵(结果矩阵)

3.7 输出模型准确率

3.8 绘制混淆矩阵图

3.9 完整实现代码

3.10 结果输出示例

四、 XGBOOST算法的敏感性分析和实际应用

4.1 敏感性分析

4.2 算法应用

五、结论

六、备注

0 绪论


数据挖掘和数学建模等比赛中,除了算法的实现,还需要对数据进行较为合理的预处理,包括缺失值处理、异常值处理、定类数据特征编码和冗余特征的删除等等,本文默认读者的数据均已完成数据预处理,如有需要,后续会将数据预处理的方法也进行发布。

一、材料准备

**** Python编译器:Pycharm社区版或个人版等

训练数据集:此处使用2022年数维杯国际大学生数学建模竞赛C题的附件数据为例。

数据处理:经过初步数据清洗和相关性分析等操作得到初步的特征,并利用决策树进行特征重要性分析,完成二次特征降维,得到’CDRSB_bl’, ‘PIB_bl’,
'FBB_bl’三个自变量特征,DX_bl为分类特征。

二、算法原理

**** XGBOOST算法基于决策树的集成方法,主要采用了Boosting的思想,是Gradient
Boosting算法的扩展,并使用梯度提升技术来提高模型的准确性和泛化能力。

首先将基分类器层层叠加,然后每一层在训练的时候,对前一层基分类器分错的样本,给予更高的权重,XGBOOST的目标函数为:

(1)

其中,![](https://img-
blog.csdnimg.cn/39a2e2f0c82749e9bac58174e009cc02.png)为损失函数;![](https://img-
blog.csdnimg.cn/bc926f831bd543bab132ef967f2e93de.png)为正则项,用于控制树的复杂度;![](https://img-
blog.csdnimg.cn/82e34d1030ac45aea3e5c3c587b85b61.png)为常数项,![](https://img-
blog.csdnimg.cn/3b7a9ff0df474dde8a03ef2fd7ce0381.png)为新树的预测值![](https://img-
blog.csdnimg.cn/79c6bae24fc248b5ac3843216b86c05d.png),它是将树的个数的结果进行求和。

三、算法 Python 实现

3.1 数据加载

此处导入本文所需数据,DataX为自变量数据,DataY为目标变量数据(DX_bl)。

import pandas as pd
X = pd.DataFrame(pd.read_excel('DataX.xlsx')).values  # 输入特征
y = pd.DataFrame(pd.read_excel('DataY.xlsx')).values  # 目标变量

3.2 将目标变量的定类数据分类编码

此处仅用0-4来代替五类数据,因为此处仅做预测,并不涉及相关性分析等其他操作,所以普通的分类编码就可以。如果需要用来做相关性分析或其他计算型操作,建议使用独热编码(OneHot-
Encoding)。

from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
y = le.fit_transform(y)
label_mapping = {0: 'AD', 1: 'CN', 2: 'EMCI', 3: 'LMCI', 4: 'SMC'}
#此处为了后续输出混淆矩阵时,用原始数据输出

3.3 将数据分为训练数据和测试数据

本文将原始样本数据通过随机洗牌,并将70%的样本数据作为训练数据,30%的样本数据作为测试数据。这是一个较为常见的拆分方法,读者可通过不同的拆分测试最佳准确率和F1-score。

from sklearn.model_selection import train_test_split
# 将数据分为训练数据和测试数据
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, train_size=0.7, random_state=42)

3.4训练XGBOOST模型

基于70%的样本数据进行训练建模,python有XGBOOST算法的库,所以很方便就可以调用。

import xgboost as xgb
# 训练XGBoost分类器
model = xgb.XGBClassifier()
model.fit(X_train, y_train)
#xgb.plot_tree(model)

3.5 测试模型

利用另外的30%样本数据进行测试模型准确率、精确率、召回率和F1度量值。

# 使用测试数据预测类别
y_pred = model.predict(X_test)

3.6 输出模型的预测混淆矩阵(结果矩阵)

此处输出混淆矩阵的方法和之前的随机森林、KNN算法都有点不同,因为随机森拉算法不需要将定类数据进行分类编码就可以直接调用随机森林算法模型。

from sklearn.metrics import confusion_matrix, classification_report, accuracy_score
cm = confusion_matrix(y_test, y_pred)
# 输出混淆矩阵
for i, true_label in enumerate(label_mapping.values()):
    row = ''
    for j, pred_label in enumerate(label_mapping.values()):
        row += f'{cm[i, j]} ({pred_label})\t'
    print(f'{row} | {true_label}')

# 输出混淆矩阵
print(classification_report(y_test, y_pred,target_names=['AD', 'CN', 'EMCI', 'LMCI', 'SMC']))  # 输出混淆矩阵

3.7 输出模型准确率

#此处的导库在上一个代码段中已引入
print("Accuracy:")
print(accuracy_score(y_test, y_pred))

3.8 绘制混淆矩阵图

将混淆矩阵结果图绘制并输出,可以将这一结果图放在论文中,提升论文美感和信服度。

import matplotlib.pyplot as plt
import numpy as np
label_names = ['AD', 'CN', 'EMCI', 'LMCI', 'SMC']
cm = confusion_matrix(y_test, y_pred)

# 绘制混淆矩阵图
fig, ax = plt.subplots()
im = ax.imshow(cm, interpolation='nearest', cmap=plt.cm.Blues)
ax.figure.colorbar(im, ax=ax)
ax.set(xticks=np.arange(cm.shape[1]),
       yticks=np.arange(cm.shape[0]),
       xticklabels=label_names, yticklabels=label_names,
       title='Confusion matrix',
       ylabel='True label',
       xlabel='Predicted label')

# 在矩阵图中显示数字标签
thresh = cm.max() / 2.
for i in range(cm.shape[0]):
    for j in range(cm.shape[1]):
        ax.text(j, i, format(cm[i, j], 'd'),
                ha="center", va="center",
                color="white" if cm[i, j] > thresh else "black")

fig.tight_layout()
#plt.show()
plt.savefig('XGBoost_Conclusion.png', dpi=300)

上面的代码首先计算混淆矩阵,然后使用 matplotlib 库中的 imshow 函数将混淆矩阵可视化,最后通过 text 函数在混淆矩阵上添加数字,并使用
show/savefig 函数显示图像,结果输出如图3.1所示。

图3.1 混淆矩阵结果图

3.9 完整实现代码

# 导入需要的库
from sklearn.preprocessing import LabelEncoder
import matplotlib.pyplot as plt
import pandas as pd
import xgboost as xgb
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix, classification_report, accuracy_score
import numpy as np

le = LabelEncoder()
label_mapping = {0: 'AD', 1: 'CN', 2: 'EMCI', 3: 'LMCI', 4: 'SMC'}
X = pd.DataFrame(pd.read_excel('DataX.xlsx')).values  # 输入特征
y = pd.DataFrame(pd.read_excel('DataY.xlsx')).values  # 目标变量
y = le.fit_transform(y)
# 将数据分为训练数据和测试数据
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, train_size=0.7, random_state=42)
# 训练XGBoost分类器
model = xgb.XGBClassifier()
model.fit(X_train, y_train)
#xgb.plot_tree(model)
# 使用测试数据预测类别
y_pred = model.predict(X_test)
cm = confusion_matrix(y_test, y_pred)
# 输出混淆矩阵
for i, true_label in enumerate(label_mapping.values()):
    row = ''
    for j, pred_label in enumerate(label_mapping.values()):
        row += f'{cm[i, j]} ({pred_label})\t'
    print(f'{row} | {true_label}')

# 输出混淆矩阵
print(classification_report(y_test, y_pred,target_names=['AD', 'CN', 'EMCI', 'LMCI', 'SMC']))  # 输出混淆矩阵
print("Accuracy:")
print(accuracy_score(y_test, y_pred))


# label_names 是分类变量的取值名称列表
label_names = ['AD', 'CN', 'EMCI', 'LMCI', 'SMC']
cm = confusion_matrix(y_test, y_pred)

# 绘制混淆矩阵图
fig, ax = plt.subplots()
im = ax.imshow(cm, interpolation='nearest', cmap=plt.cm.Blues)
ax.figure.colorbar(im, ax=ax)
ax.set(xticks=np.arange(cm.shape[1]),
       yticks=np.arange(cm.shape[0]),
       xticklabels=label_names, yticklabels=label_names,
       title='Confusion matrix',
       ylabel='True label',
       xlabel='Predicted label')

# 在矩阵图中显示数字标签
thresh = cm.max() / 2.
for i in range(cm.shape[0]):
    for j in range(cm.shape[1]):
        ax.text(j, i, format(cm[i, j], 'd'),
                ha="center", va="center",
                color="white" if cm[i, j] > thresh else "black")

fig.tight_layout()
#plt.show()
plt.savefig('XGBoost_Conclusion.png', dpi=300)
# 上面的代码首先计算混淆矩阵,然后使用 matplotlib 库中的 imshow 函数将混淆矩阵可视化,最后通过 text 函数在混淆矩阵上添加数字,并使用 show/savefig 函数显示图像。

3.10 结果输出示例

图3.2 结果输出示例

四、 XGBOOST算法的敏感性分析和实际应用

4.1 敏感性分析

敏感性分析也叫做稳定性分析,可以基于统计学思想,通过百次测试,记录其准确率、精确率、召回率和F1-Score的数据,统计其中位数、平均值、最大值和最小值等数据,从而进行对应的敏感性分析。结果表明符合原模型成立,则通过了敏感性分析。前面的随机森林算法和KNN算法也是如此。

4.2 算法应用

XGBOOST算法可应用于大数据分析、预测等方面,尤其是大数据竞赛(Kaggle、阿里天池等竞赛中)特别常用,也是本人目前认为最好用的一个算法。

五、结论

本文基于XGBOOST算法,从数据预处理、算法原理、算法实现、敏感性分析和算法应用都做了具体的分析,可适用于大部分机器学习算法初学者。

六、备注

本文为原创文章,禁止转载,违者必究。如需原始数据,可点赞+收藏,然后私聊作者或在评论区中留下你的邮箱,即可获得训练数据一份。

学习网络安全技术的方法无非三种:

第一种是报网络安全专业,现在叫网络空间安全专业,主要专业课程:程序设计、计算机组成原理原理、数据结构、操作系统原理、数据库系统、 计算机网络、人工智能、自然语言处理、社会计算、网络安全法律法规、网络安全、内容安全、数字取证、机器学习,多媒体技术,信息检索、舆情分析等。

第二种是自学,就是在网上找资源、找教程,或者是想办法认识一-些大佬,抱紧大腿,不过这种方法很耗时间,而且学习没有规划,可能很长一段时间感觉自己没有进步,容易劝退。

如果你对网络安全入门感兴趣,那么你需要的话可以点击这里👉网络安全重磅福利:入门&进阶全套282G学习资源包免费分享!

第三种就是去找培训。

image.png

接下来,我会教你零基础入门快速入门上手网络安全。

网络安全入门到底是先学编程还是先学计算机基础?这是一个争议比较大的问题,有的人会建议先学编程,而有的人会建议先学计算机基础,其实这都是要学的。而且这些对学习网络安全来说非常重要。但是对于完全零基础的人来说又或者急于转行的人来说,学习编程或者计算机基础对他们来说都有一定的难度,并且花费时间太长。

第一阶段:基础准备 4周~6周

这个阶段是所有准备进入安全行业必学的部分,俗话说:基础不劳,地动山摇
image.png

第二阶段:web渗透

学习基础 时间:1周 ~ 2周:

① 了解基本概念:(SQL注入、XSS、上传、CSRF、一句话木马、等)为之后的WEB渗透测试打下基础。
② 查看一些论坛的一些Web渗透,学一学案例的思路,每一个站点都不一样,所以思路是主要的。
③ 学会提问的艺术,如果遇到不懂得要善于提问。
image.png

配置渗透环境 时间:3周 ~ 4周:

① 了解渗透测试常用的工具,例如(AWVS、SQLMAP、NMAP、BURP、中国菜刀等)。
② 下载这些工具无后门版本并且安装到计算机上。
③ 了解这些工具的使用场景,懂得基本的使用,推荐在Google上查找。

渗透实战操作 时间:约6周:

① 在网上搜索渗透实战案例,深入了解SQL注入、文件上传、解析漏洞等在实战中的使用。
② 自己搭建漏洞环境测试,推荐DWVA,SQLi-labs,Upload-labs,bWAPP。
③ 懂得渗透测试的阶段,每一个阶段需要做那些动作:例如PTES渗透测试执行标准。
④ 深入研究手工SQL注入,寻找绕过waf的方法,制作自己的脚本。
⑤ 研究文件上传的原理,如何进行截断、双重后缀欺骗(IIS、PHP)、解析漏洞利用(IIS、Nignix、Apache)等,参照:上传攻击框架。
⑥ 了解XSS形成原理和种类,在DWVA中进行实践,使用一个含有XSS漏洞的cms,安装安全狗等进行测试。
⑦ 了解一句话木马,并尝试编写过狗一句话。
⑧ 研究在Windows和Linux下的提升权限,Google关键词:提权
image.png
以上就是入门阶段

第三阶段:进阶

已经入门并且找到工作之后又该怎么进阶?详情看下图
image.png

给新手小白的入门建议:
新手入门学习最好还是从视频入手进行学习,视频的浅显易懂相比起晦涩的文字而言更容易吸收,这里我给大家准备了一套网络安全从入门到精通的视频学习资料包免费领取哦!

如果你对网络安全入门感兴趣,那么你需要的话可以点击这里👉网络安全重磅福利:入门&进阶全套282G学习资源包免费分享!

  • 14
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
XGBoost是一个基于梯度提升框架的机器学习算法,它在分类和回归问题中都有很好的表现。XGBoostPython实现可以通过安装XGBoost包来实现。安装方法如下: 1.使用pip安装:在命令行中输入以下命令即可安装: ``` pip install xgboost ``` 2.使用conda安装:在命令行中输入以下命令即可安装: ``` conda install -c anaconda py-xgboost ``` 安装完成后,可以使用以下代码导入XGBoost库: ``` import xgboost as xgb ``` 接下来,可以使用XGBoost库提供的API来创建模型、训练模型和预测数据等操作。例如,以下代码可以使用XGBoost库来创建一个回归模型: ``` import numpy as np from sklearn.datasets import load_boston from sklearn.model_selection import train_test_split import xgboost as xgb #加载数据集 boston = load_boston() X_train, X_test, y_train, y_test = train_test_split(boston.data, boston.target, test_size=0.2, random_state=42) #将数据转换为DMatrix格式 dtrain = xgb.DMatrix(X_train, label=y_train) dtest = xgb.DMatrix(X_test, label=y_test) #设置参数 param = {'max_depth': 3, 'eta': 0.1, 'objective': 'reg:squarederror'} #训练模型 num_round = 100 bst = xgb.train(param, dtrain, num_round) #使用模型预测数据 preds = bst.predict(dtest) ``` 以上代码中,首先加载波士顿房价数据集,然后使用train_test_split将数据集分为训练集和测试集。接着,将数据集转换为DMatrix格式,并设置XGBoost模型的参数。最后,使用xgb.train训练模型,并使用训练好的模型对测试集进行预测。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值