验证码案例

验证码案例

伪随机数

实例化:Random 名字 = new Random();

使用:名字.Next(x,y);x表示随机数下线,y表示随机数上限(不包括y)

ASCII码表中 小写字母97-122 大写字母 65-90

直接一个label保存验证码

设计界面只有一个button和一个label

private void button1_Click(object sender, EventArgs e)
        {
            Label l = new Label();
            Random r = new Random();//实例化一个伪随机数
            string c = "";
            for(int i = 1; i <= 4; i++)//循环一次即为一位验证码
            {
                int typ = r.Next(0, 2);//用于随机选择验证码是字母还是数字
                
                if (typ==0)
                {
                    //ASCII码表中  小写字母97-122   大写字母 65-90
                    c += ((char)r.Next(65, 91)).ToString();//随机A——Z的字母
                }
                else if (typ==1)
                {
                    c += r.Next(0, 10).ToString();
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
你可以使用一些图像处理库和机器学习算法来识别爬虫中的图形验证码。以下是一个基本的案例示例: 1. 首先,你需要安装需要的库,如OpenCV和Pillow。使用以下命令进行安装: ``` pip install opencv-python pip install Pillow ``` 2. 导入所需的库: ```python import cv2 from PIL import Image from pytesseract import pytesseract ``` 3. 下载并保存验证码图片。 4. 使用OpenCV库加载验证码图片,并将其转换为灰度图像: ```python image = cv2.imread('captcha.png') gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) ``` 5. 对图像进行预处理,以便更好地识别验证码。可以尝试使用图像二值化、降噪等技术: ```python ret, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU) ``` 6. 使用Pillow库创建一个临时图像对象,并将处理后的图像保存到临时文件中: ```python temp_image = Image.fromarray(thresh) temp_image.save('temp.png') ``` 7. 使用Tesseract库对临时文件中的验证码进行识别: ```python captcha_text = pytesseract.image_to_string(Image.open('temp.png')) ``` 8. 最后,可以输出识别出的验证码文本: ```python print('识别结果:', captcha_text) ``` 这只是一个基本的示例,实际的验证码可能会更复杂,需要根据具体情况进行适当的调整和优化。还可以尝试使用其他机器学习算法,如卷积神经网络(CNN),来提高验证码识别的准确性。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值