动手学数据分析-task02

本文介绍了数据清洗和特征处理的步骤,包括处理缺失值如None和NAN,使用pandas的函数进行数据检查和填充。通过示例展示了如何将文本特征转化为数值型,以及如何利用get_dummies进行one-hot编码。接着,探讨了数据重构,如使用pd.concat、join、append和merge进行数据合并,并展示了如何删除、隐藏和筛选数据列。这些操作对于数据分析和建模至关重要。
摘要由CSDN通过智能技术生成

一、数据清洗及特征处理

一般情况下,获取的数据中会存在一些NAN值,关于None和NAN的区别如下:
None能够直接被导入数据库作为空值处理, 包含NaN的数据导入时会报错。

numpy和pandas的很多函数能处理NaN,但是如果遇到None就会报错。

None和NaN都不能被pandas的groupby函数处理,包含None或者NaN的组都会被忽略。

为避免其影响到后续的数据分析,需要提前对它进行处理:

  1. 缺失值观察与处理
    df[ ] : 只取某列的值,是键值, 返回Series类型
    df[[ ]] :取完全的某列,是表格,返回DataFrame类型
df.isnull().sum()
df.fillna(119).head(3)
df = df.drop_duplicates()
  1. 特征观察与处理
    数值型特征一般可以直接用于模型的训练,文本型特征往往需要转换成数值型特征才能用于建模分析。
df['Avgage'] = pd.cut(df['Age'],5,labels = [1,2,3,4,5])
df['Cutage'] = pd.cut(df['Age'],[0,5,15,30,50,80],labels = [1,2,3,4,5])
df['Change_sex'] = df['Sex'].replace(['male','female'],[1,0])
df['Change_sex1'] = df['Sex'].map({'male':1,'female':0})
x = pd.get_dummies(df['Avgage'])
df1 = pd.concat([df,x],axis = 1)

二、数据重构

可以完成数据合并的方法有pd.concat,join,append等。

  1. 数据合并
result_up = pd.concat([df_left_up,df_right_up],axis = 1)
result_down = pd.concat([df_left_down,df_right_down],axis = 1)
result = pd.concat([result_up,result_down],axis = 0)
result1 = df_left_up.join(df_right_up)
result2 = df_left_down.join(df_right_down)
result3 = result1.append(result2)
result4 = pd.merge(df_left_up,df_right_up,left_index=True,right_index=True)
result5 = pd.merge(df_left_down,df_right_down,left_index=True,right_index=True)
result6 = result4.append(result5)
unit_result = result.stack().head(10)
  1. 删除多余的列
del test_data['a']
test_data.head(3)
  1. 隐藏列元素
test_data.drop(['PassengerId','Name','Age','Ticket'],axis=1).head(3)
  1. 筛选
df1 = df.loc[df.Age<10]
midage = df.loc[(df.Age>10) & (df.Age<50)]
midage = midage.reset_index(drop=True)
df2 = midage.loc[[100],['Pclass','Sex']]
df3 = midage.loc[[100,105,108],['Pclass','Name','Sex']]
df4 = midage.iloc[[100,105,108],[2,3,4]]
数据中心机房是现代信息技术的核心设施,它承载着企业的重要数据和服务,因此,其基础设计与规划至关重要。在制定这样的方案时,需要考虑的因素繁多,包括但不限于以下几点: 1. **容量规划**:必须根据业务需求预测未来几年的数据处理和存储需求,合理规划机房的规模和设备容量。这涉及到服务器的数量、存储设备的容量以及网络带宽的需求等。 2. **电力供应**:数据中心是能源消耗大户,因此电力供应设计是关键。要考虑不间断电源(UPS)、备用发电机的容量,以及高效节能的电力分配系统,确保电力的稳定供应并降低能耗。 3. **冷却系统**:由于设备密集运行,散热问题不容忽视。合理的空调布局和冷却系统设计可以有效控制机房温度,避免设备过热引发故障。 4. **物理安全**:包括防火、防盗、防震、防潮等措施。需要设计防火分区、安装烟雾探测和自动灭火系统,设置访问控制系统,确保只有授权人员能进入。 5. **网络架构**:规划高速、稳定、冗余的网络架构,考虑使用光纤、以太网等技术,构建层次化网络,保证数据传输的高效性和安全性。 6. **运维管理**:设计易于管理和维护的IT基础设施,例如模块化设计便于扩展,集中监控系统可以实时查看设备状态,及时发现并解决问题。 7. **绿色数据中心**:随着环保意识的提升,绿色数据中心成为趋势。采用节能设备,利用自然冷源,以及优化能源管理策略,实现低能耗和低碳排放。 8. **灾难恢复**:考虑备份和恢复策略,建立异地灾备中心,确保在主数据中心发生故障时,业务能够快速恢复。 9. **法规遵从**:需遵循国家和地区的相关法律法规,如信息安全、数据保护和环境保护等,确保数据中心的合法运营。 10. **扩展性**:设计时应考虑到未来的业务发展和技术进步,保证机房有充足的扩展空间和升级能力。 技术创新在数据中心机房基础设计及规划方案中扮演了重要角色。例如,采用虚拟化技术可以提高硬件资源利用率,软件定义网络(SDN)提供更灵活的网络管理,人工智能和机器习则有助于优化能源管理和故障预测。 总结来说,一个完整且高效的数据中心机房设计及规划方案,不仅需要满足当前的技术需求和业务目标,还需要具备前瞻性和可持续性,以适应快速变化的IT环境和未来可能的技术革新。同时,也要注重经济效益,平衡投资成本与长期运营成本,实现数据中心的高效、安全和绿色运行。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值