【Python Pandas】关于DataFrame行转列,转字典的尝试与记录(有代码和结果展示)

本文记录了使用Python Pandas进行数据预处理,特别是如何将DataFrame的行转换为列,以及如何进行数据分组并转换为字典的过程。在数据预处理阶段,对城市和店铺进行了非空检查,对时间和支出列进行了正则匹配筛选。在尝试行转列时,探讨了unstack()和pivot()方法,但由于数据特性导致的索引重复问题,这两种方法未能直接适用。最终,通过自定义代码实现了分组和转字典的操作,为每个城市生成了店铺支出随时间变化的曲线图。
摘要由CSDN通过智能技术生成

想要实现的数据处理是画出如下表格中,每个城市中的不同店铺随时间变化的支出曲线。
原始数据

数据预处理

首先进行所有操作之前要进行数据预处理,对于城市和店铺这两列来说,它们只要不为空即可,处理的方式为:

import pandas as pd
df = pd.read_csv('test.csv')
df = df[df["城市"].notna()
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值