停泊式共享单车的出行需求与建筑环境之间的关联:来自美国 7 个城市的证据
原文:Tang, Justin Hayse Chiwing G., et al. “The association between travel demand of docked bike-sharing and the built environment: Evidence from seven US cities.” Sustainable Cities and Society 106 (2024): 105325.
1. 引言
文章开头提到,有桩共享单车(Docked Bike-Sharing, DBS)作为一种新兴的交通方式,在全球多个城市中越来越受欢迎。然而,DBS的成功和可持续性受到多种因素的影响,其中建成环境是一个重要的因素。以往研究对DBS出行需求与建成环境之间的关系进行了探讨,但研究结果并不一致。因此,本研究旨在通过比较美国七个城市的DBS出行需求与建成环境之间的关系,找出是否存在普遍适用的建成环境因素。
2. 文献综述
文章回顾了共享自行车使用的影响因素,包括社会人口统计属性、个人出行行为、天气条件等。接着重点讨论了建成环境与共享自行车使用的关系,包括自行车基础设施、土地利用模式、POIs等。最后,文章指出了以往跨城市比较研究的不足,为本文的研究提供了理论基础。
3. 数据和方法
3.1 研究区域
文章选取了美国七个主要城市:纽约、波士顿、芝加哥、华盛顿特区、洛杉矶、费城和旧金山。这些城市在地理规模、人口和经济发展方面具有多样性,并且都实施了DBS项目。
3.2 分析框架
文章设计了一个分析框架,包括两个模块。模块1是对DBS骑行记录和POI数据进行数据过滤,并将数据分为工作日和非工作日。模块2是应用统计和地理模型,包括PCC分析、OLS回归和GWR模型,以探究DBS出行需求与POIs之间的关系。
3.3 数据来源
- DBS行程数据:从七个开放的DBS公司获取2019年5月的数据。数据经过清洗和过滤,去除了异常值和降雨天的数据。
- POI数据:使用OpenStreetMap数据,分为十一类,包括住宅、商业、办公、教育、紧急服务、金融、政府、医疗、公共设施、体育设施和交通。
模型的因变量与自变量
因变量
文章中的因变量是有桩共享单车(Docked Bike-Sharing, DBS)的出行需求。具体而言,DBS出行需求通过分析DBS行程记录来衡量,这些记录包括了起点和终点的经纬度、起点和终点的自行车站ID、自行车ID和行程ID等关键信息。为了确保分析的准确性,研究者对原始数据进行了清洗和过滤,移除了旅行时间小于一分钟或大于两小时的异常值,并且排除了降雨天的データ,以减少天气因素对出行模式的影响。通过这些处理,得到了每个DBS站点在工作日和非工作日的出行需求数据。
自变量
文章中的自变量是兴趣点(Points of Interest, POIs),这些POIs被用作描述建成环境的因素。POIs数据来源于OpenStreetMap(OSM),这是一个公开可用的地理空间数据库平台。研究者依据OSM的分类方法,并参考以往相关研究,将POIs分为以下十一类:
- 住宅(Residential, Rsd):包括公寓、房屋、宿舍等。
- 商业(Commercial, Cml):包括商店、超市、餐馆、旅游景点、住宿设施等。
- 办公(Office, Ofc):包括办公室、办公大楼等。
- 教育(Education, Edu):包括幼儿园、学校、学院、大学、语言学校等。
- 紧急服务(Emergency, Emer):包括消防站、消防栓、警察局、救护车站、除颤器等。
- 金融(Financial, Fin):包括自动取款机、银行、货币兑换处等。
- 政府(Government, Gov):包括政府办公室、邮局、大使馆、市政厅、军事设施、法院等。
- 医疗保健(Healthcare, Hc):包括诊所、牙科诊所、医生诊所、医院、药店等。
- 公共设施(Public, Pub):包括历史建筑、钟楼、社区中心、图书馆、喷泉、礼拜场所、厕所等。
- 体育设施(Sport, Spt):包括体育场、游泳池、球场、体育中心等。
- 交通(Transportation, Trans):包括公共汽车站、公共汽车停车点、地铁入口、渡轮码头、铁路车站、出租车站、电车站等。
这些POIs被用来表征城市建成环境的特征,并通过计算不同缓冲区半径(100米、300米、500米、800米和1000米)内各类POIs的数量,来探究它们与DBS出行需求之间的关系。缓冲区半径的选择基于对相关文献的综合审查,并通过皮尔逊相关系数(PCC)分析来确定最适合的缓冲区半径和POIs类型。
模型应用
- PCC分析:用于确定POIs与DBS出行需求之间的相关性,并选择适合的POIs和缓冲区半径。
- OLS模型:用于评估POIs数量与DBS出行需求之间的整体关系,通过最小化误差的平方和来估计回归系数。
- GWR模型:考虑空间异质性,为研究区域内的每个位置生成单独的回归方程,揭示局部空间相关性。
通过这些模型,文章能够详细分析DBS出行需求与建成环境之间的复杂关系,并为城市规划和交通政策制定提供科学依据。
分析模型
- 皮尔逊相关系数(PCC)分析:用于评估POIs与DBS出行需求之间的相关性,确定合适的POIs和缓冲区半径。
- 普通最小二乘法(OLS):用于测试DBS使用与POIs数量之间的关系,评估整体关系。
- 地理加权回归(GWR):考虑空间异质性,生成每个位置的回归方程,揭示局部空间相关性。
4. 结果与讨论
4.1 利用皮尔逊相关系数(PCC)分析确定描述建成环境的合适POIs
因变量和自变量
- 因变量:DBS出行需求,通过分析DBS行程记录来衡量,包括起点和终点的经纬度、起点和终点的自行车站ID、自行车ID和行程ID等关键信息。研究者对原始数据进行了清洗和过滤,移除了旅行时间小于一分钟或大于两小时的异常值,并且排除了降雨天的数据,以减少天气因素对出行模式的影响。
- 自变量:POIs,分为十一类,包括住宅、商业、办公、教育、紧急服务、金融、政府、医疗保健、公共设施、体育设施和交通。这些POIs被用来表征城市建成环境的特征,并通过计算不同缓冲区半径(100米、300米、500米、800米和1000米)内各类POIs的数量,来探究它们与DBS出行需求之间的关系。
结果
通过PCC分析,文章确定了不同缓冲区半径下POIs与DBS出行需求的相关性。结果显示,1000米缓冲区半径在大多数城市中与DBS出行需求的相关性最强。然而,洛杉矶和旧金山在较短的缓冲区半径(如100米、300米和500米)下也显示出显著的相关性。例如,在纽约市,商业、办公、金融、医疗保健、公共设施和交通POIs在1000米缓冲区半径下与DBS出行需求表现出中等到较强的相关性。在洛杉矶和旧金山,各种POI类型(如商业、紧急服务、金融、医疗保健和公共POIs)在较短的缓冲区半径下成为影响因素。
4.2 量化建成环境与DBS出行需求之间的关系:OLS和GWR模型
2.1 模型表现
文章比较了OLS和GWR模型的性能,发现GWR模型在解释数据变异性方面优于OLS模型,表现出更高的R²值和调整后的R²值,以及更低的AICc值。这表明GWR模型在考虑空间异质性方面更为有效。
2.2 工作日的关联
GWR模型结果显示,不同城市的POIs与DBS出行需求之间的关联存在空间异质性。例如:
- 商业POIs:在芝加哥和洛杉矶表现出纯正相关,这可以归因于这些商业区域的活跃经济活动。而在纽约和旧金山则表现出混合相关,这可能源于城市商业结构的多样性和居民通勤习惯的差异。
- 办公POIs:在费城和旧金山表现出正负相关,表明办公建筑的高集中区域在工作日可能增加或减少DBS需求,具体取决于城市内的特定区域。
- 紧急服务POIs:在波士顿和旧金山表现出混合相关,这可能归因于城市内紧急设施的可达性和分布差异。
- 金融POIs:在纽约、波士顿、华盛顿特区、费城和旧金山表现出正负相关,表明金融因素在不同城市区域对DBS出行需求的影响存在空间异质性。
- 政府POIs:在纽约、波士顿、芝加哥和华盛顿特区表现出正负相关,表明政府建筑与DBS出行需求之间的关系在这些城市内存在空间变化。
- 医疗保健POIs:在芝加哥、华盛顿特区、洛杉矶、费城和旧金山表现出正负相关,表明医疗设施在工作日对DBS需求的影响存在空间差异。
- 公共设施POIs:在纽约和华盛顿特区表现出正负相关,而洛杉矶则表现出纯负相关,表明公共设施对DBS出行需求的影响在不同城市存在差异。
- 交通POIs:在纽约、芝加哥、华盛顿特区、费城和旧金山表现出正负相关,而洛杉矶则表现出纯负相关,这可能与洛杉矶的汽车导向文化和公共交通服务的局限性有关。
2.3 非工作日的关联
非工作日的关联分析显示:
- 商业POIs:在纽约和芝加哥表现出正负相关,而在旧金山和洛杉矶则表现出纯正相关,表明这些城市的商业区域在周末和节假日持续存在DBS需求。
- 紧急服务POIs:在波士顿和旧金山表现出混合相关,与工作日的模式相似。
- 金融POIs:在纽约、波士顿、洛杉矶和旧金山表现出正负相关,这可能归因于金融活动模式和商务旅行的减少。
- 政府POIs:在纽约、波士顿、华盛顿特区、费城和旧金山表现出正负相关,这可能与政府赞助的活动、旅游景点、社区参与水平或政府组织的休闲设施有关。
- 医疗保健POIs:在芝加哥、费城和旧金山表现出正负相关,而洛杉矶则表现出纯负相关,表明医疗设施在非工作日对DBS需求的影响存在空间差异。
- 公共设施POIs:在纽约、华盛顿特区和旧金山表现出正负相关,反映出这些城市区域的多样性和公共空间的不同用途。
- 体育设施POIs:仅在洛杉矶表现出正相关,表明体育活动和场馆可能在非工作日特别促进洛杉矶的DBS需求。
- 交通POIs:在纽约和华盛顿特区表现出正负相关,而洛杉矶则表现出纯负相关,这可能与洛杉矶的交通设施和替代交通模式的可用性有关。
图6:七个美国城市DBS站点、POIs和城市边界的地理空间分布
- 内容:展示了七个美国城市DBS站点(红点)、POIs(蓝点)和城市边界的地理空间分布。
- 作用:为读者提供了研究区域的空间特征,展示了DBS站点和POIs在城市内的分布情况,帮助理解建成环境对DBS出行需求的影响。
5. 结论
5.1 主要发现
文章通过比较美国七个城市的有桩共享单车(DBS)出行需求与建成环境之间的关系,得出了以下主要发现:
-
空间异质性:不同城市的POIs(兴趣点)与DBS出行需求之间的关联存在显著的空间异质性。这意味着,单一因素不能普遍适用于整个城市,也无法通过一个简单的模型来解释所有城市中DBS出行需求的差异。例如,办公POIs在费城和旧金山表现出正负相关,紧急服务POIs在波士顿和旧金山表现出混合相关,金融POIs在纽约、波士顿、华盛顿特区、费城和旧金山表现出正负相关,政府POIs在纽约、波士顿、芝加哥和华盛顿特区表现出正负相关,医疗保健POIs在芝加哥、华盛顿特区、洛杉矶、费城和旧金山表现出正负相关,公共设施POIs在纽约和华盛顿特区表现出正负相关,而洛杉矶则表现出纯负相关,交通POIs在纽约、芝加哥、华盛顿特区、费城和旧金山表现出正负相关,而洛杉矶则表现出纯负相关。
-
商业POIs的持续正相关:商业POIs在芝加哥和洛杉矶的工作日,以及旧金山和洛杉矶的非工作日表现出持续的正相关。这表明这些城市的商业区域在工作日和非工作日都持续存在较高的DBS需求,可能归因于这些区域的活跃经济活动和多样化的出行需求。
-
非工作日的特殊性:在非工作日,体育设施POIs仅在洛杉矶表现出正相关,表明体育活动和场馆可能在非工作日特别促进洛杉矶的DBS需求。此外,洛杉矶在工作日和非工作日都表现出对交通POIs的纯负相关,这可能与洛杉矶的汽车导向文化和公共交通服务的局限性有关。
5.2 政策建议
文章为优化DBS融入城市交通系统提供了以下政策建议:
-
因地制宜的规划策略:由于DBS出行需求与建成环境之间的关系存在空间异质性,城市规划者和政策制定者应根据每个城市的特定建成环境特征,制定因地制宜的DBS站点布局和运营策略。例如,在商业活动活跃的区域增加DBS站点,以满足高出行需求。
-
多模式交通整合:文章强调了DBS与其他交通模式(如公共交通)的整合的重要性。在交通POIs附近合理布局DBS站点,可以提高公共交通的可达性,促进绿色出行。
-
公共设施与DBS的协同规划:鉴于公共设施POIs在某些城市对DBS出行需求的显著影响,政策制定者可以考虑将DBS站点与公共设施(如公园、图书馆等)协同规划,以提高公共设施的利用率和居民的生活质量。
5.3 研究局限性
尽管本文提供了有价值的见解,但也存在一些局限性:
-
数据覆盖范围:研究仅基于2019年5月的DBS行程数据,可能无法捕捉DBS出行需求的长期趋势和季节性变化。未来研究可以通过纵向分析,涵盖多个年份的数据,以更全面地理解DBS出行需求的动态变化。
-
城市选择的局限性:研究主要集中在美国的七个主要城市,可能无法完全代表美国所有城市的多样性,尤其是小城市和农村地区的出行模式。未来研究可以扩展到更多样化的城市类型,包括小城市和农村地区。
-
POIs的内在特性未被充分考虑:本文主要关注POIs的类型和分布,但未深入探讨POIs的内在特性(如设施的质量、服务水平等)可能对DBS出行需求的影响。未来研究可以进一步细化POIs的特征,以更全面地评估其对DBS出行需求的影响。
-
因果关系的不确定性:本文通过相关性分析揭示了DBS出行需求与建成环境之间的关系,但并未建立明确的因果关系。未来研究可以通过干预性研究或实验设计,探讨建成环境变化对DBS出行需求的因果影响。
5.4 未来研究方向
文章提出了以下未来研究方向:
-
纵向数据分析:通过多年的数据分析,捕捉DBS出行需求的长期趋势和季节性变化,以评估DBS系统的可持续性和适应性。
-
扩展地理范围:将研究扩展到更多样化的城市类型,包括小城市和农村地区,以提高研究结果的普适性。
-
POIs特征的细化:进一步探讨POIs的内在特性(如设施质量、服务水平、用户评价等)对DBS出行需求的影响,以更全面地理解建成环境对出行行为的作用机制。
-
因果关系研究:采用干预性研究或实验设计,明确DBS出行需求与建成环境之间的因果关系,为政策制定提供更具说服力的科学依据。
-
结合用户调查和定性分析:通过用户调查和定性研究方法,深入了解用户的出行动机和偏好,从而更精准地优化DBS服务。
-
高级分析方法的应用:利用机器学习等先进分析技术,挖掘DBS出行需求与建成环境之间的复杂关系,提高模型的预测能力和解释力。
-
跨文化比较研究:在不同文化背景下(如美国、欧洲、亚洲等)比较DBS出行需求与建成环境的关系,探讨文化因素对出行行为的影响。
6. 其他
# 模拟DBS出行需求数据
np.random.seed(42)
n = 1000 # 假设有1000个DBS站点
# 生成随机的DBS出行需求数据
db_demand = np.random.poisson(lam=50, size=n)
# 生成不同类别的POIs数量(模拟数据)
poi_categories = {
'商业': np.random.poisson(lam=10, size=n),
'办公': np.random.poisson(lam=8, size=n),
'紧急服务': np.random.poisson(lam=2, size=n),
'金融': np.random.poisson(lam=5, size=n),
'政府': np.random.poisson(lam=3, size=n),
'医疗保健': np.random.poisson(lam=7, size=n),
'公共设施': np.random.poisson(lam=4, size=n),
'交通': np.random.poisson(lam=6, size=n)
}
# 模拟DBS出行需求数据
np.random.seed(42)
n = 1000 # 假设有1000个DBS站点
# 生成随机的DBS出行需求数据
db_demand = np.random.poisson(lam=50, size=n)
# 生成不同类别的POIs数量(模拟数据)
poi_categories = {
'商业': np.random.poisson(lam=10, size=n),
'办公': np.random.poisson(lam=8, size=n),
'紧急服务': np.random.poisson(lam=2, size=n),
'金融': np.random.poisson(lam=5, size=n),
'政府': np.random.poisson(lam=3, size=n),
'医疗保健': np.random.poisson(lam=7, size=n),
'公共设施': np.random.poisson(lam=4, size=n),
'交通': np.random.poisson(lam=6, size=n)
}
# 创建数据框
data = pd.DataFrame(poi_categories)
data['DBS需求'] = db_demand
# 添加空间坐标(模拟地理数据)
data['x'] = np.random.uniform(0, 100, size=n)
data['y'] = np.random.uniform(0, 100, size=n)
geometry = gpd.points_from_xy(data.x, data.y)
gdf = gpd.GeoDataFrame(data, geometry=geometry)
# 创建数据框
data = pd.DataFrame(poi_categories)
data['DBS需求'] = db_demand
# 添加空间坐标(模拟地理数据)
data['x'] = np.random.uniform(0, 100, size=n)
data['y'] = np.random.uniform(0, 100, size=n)
geometry = gpd.points_from_xy(data.x, data.y)
gdf = gpd.GeoDataFrame(data, geometry=geometry)
# 准备自变量和因变量
X = data[poi_categories.keys()]
y = data['DBS需求']
# 拟合OLS模型
ols_model = LinearRegression()
ols_model.fit(X, y)
# 评估模型
y_pred_ols = ols_model.predict(X)
r2_ols = r2_score(y, y_pred_ols)
mse_ols = mean_squared_error(y, y_pred_ols)
print("\nOLS模型性能:")
print(f"R²: {r2_ols:.4f}")
print(f"MSE: {mse_ols:.4f}")
# 打印回归系数
print("\nOLS回归系数:")
for poi, coef in zip(poi_categories.keys(), ols_model.coef_):
print(f"{poi}: {coef:.4f}")
# 准备GWR模型的空间坐标
coordinates = np.array(list(zip(gdf.x, gdf.y)))
# 创建GWR模型
gwr_selector = libpysal.weights.DistanceBand.from_array(coordinates, threshold=100, binary=True)
gwr = GWR(coordinates, X.values, y.values, gwr_selector.bandwidth, family='gaussian')
# 拟合GWR模型
gwr_results = gwr.fit()
# 评估模型
y_pred_gwr = gwr_results.predict(X.values)
r2_gwr = r2_score(y, y_pred_gwr)
mse_gwr = mean_squared_error(y, y_pred_gwr)
print("\nGWR模型性能:")
print(f"R²: {r2_gwr:.4f}")
print(f"MSE: {mse_gwr:.4f}")