时间序列分析:一维数据转二维图像 Series to Image(python和matlab代码)

引言

受最近深度学习在计算机视觉和语音识别方面的成功启发,许多研究者提出将一维时间序列数据编码为不同类型的图像,这样可以放大数据中的动态特性,更好地表征原数据。

基于对称点模式(symmetric dot pattern)的多元数据融合

对称点模式(Symmetrized Dot Pattern,SDP)算法可将复杂时间序列以散点的形式清晰映射在极坐标图中,可以使原始时域信号通过图形化的方式提高可视化能力。因为极坐标图像的特殊性,多元、多通道、多传感器数据信息可通过SDP方法融合在有限区域中。适用于多元、多通道、多传感器信号的融合(代码获取链接

参考文献:

1.https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/smt2.12118

2.万周,何俊增,姜东等.基于参数优化SDP分析的转子故障诊断方法[J].振动与冲击,2023,42(01):81-88.

  • 7
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
二维时间序列是指在时间的不同点上同时存在两个或多个变量的数据序列。这种数据结构可以用于描述一系列时间相关的事件或变化,并可用于预测和分析。而卷积神经网络(CNN)是一种深度学习模型,能够有效地从图像和二维数据中提取特征,并在许多计算机视觉任务中取得良好的性能。 在处理二维时间序列时,可以将其中的时间维度视为图像的纵轴,另一个变量维度视为图像的横轴,将其换成一个二维的图像结构。这样,我们可以使用CNN来处理二维时间序列数据。 首先,我们可以将该二维时间序列数据集划分为训练集和测试集。然后,将数据集中的每个样本换为一个二维矩阵,其中每个元素代表相应时间点上的变量值。接着,可以设计一个CNN模型,包括卷积层、池化层和全连接层。 卷积层可以通过卷积运算来提取二维矩阵中的局部特征。池化层可以减少特征的维度,同时保留重要的信息。全连接层可以将从之前层级得到的特征换为最终的输出,比如预测的变量值、时间相关性等。 在训练过程中,可以使用优化算法(如随机梯度下降)来最小化模型的损失函数,以便模型能够逐步学习和优化权重参数。通过多轮训练,模型可以学习到二维时间序列中的时空模式和特征,并在测试集上进行预测和评估。 总之,通过将二维时间序列数据换为图像结构,并使用CNN模型进行处理,我们可以将时间和变量的关系进行有效地建模和分析。这种方法可以在很多领域中得到应用,如气象预测、金融市场分析等。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值