2024年Top级优化算法-黑翅鸢优化算法 Black-winged Kite Algorithm(附Matlab代码)

引言

本期介绍了一种新的元启发式优化算法--黑翅鸢优化算法 Black-winged Kite Algorithm,BKA。该算法是一种受黑翅鸢迁徙和捕食行为启发的元启发式优化算法。该成果于2024年3月发表在SCI权威top期刊Artifcial Intelligence Review。

BKA算法作为一种简单有效的元启发式优化方法的发展。基于黑翅鸢的攻击策略和迁徙行为,对BKA的迁移和攻击阶段进行了建模。

1. 初始化。和其他算法一样,采用随机初始化方式:

图片

2. 攻击行为。作为草原小型哺乳动物和昆虫的捕食者,黑翼风筝在战斗中根据风速调整翅膀和尾巴的角度,静静地盘旋观察猎物,然后迅速俯冲攻击。该策略包括不同的攻击行为,用于全局探索和搜索。

图片

3.迁徙行为。鸟类迁徙是一种受气候和食物供应等环境因素影响的复杂行为

图片

C(0,1)表示柯西突变。

原文作者将BKA算法在CEC-2022和CEC-2017标准测试功能集以及其他复杂功能s上,获得最佳性能。通过详细的收敛分析和统计比较,验证了算法的有效性。此外,它在解决五个实际工程设计问题中的应用表明了它在解决现实世界和印度的约束挑战方面的实际潜力。

参考文献

Wang, J., Wang, Wc., Hu, Xx. et al. Black-winged kite algorithm: a nature-inspired meta-heuristic for solving benchmark functions and engineering problems. Artif Intell Rev 57, 98 (2024). https://doi.org/10.1007/s10462-024-10723-4.

Matlab代码下载

微信搜索并关注-优化算法侠,或扫描下方二维码关注,以算法名字搜索历史文章即可下载。

2024年Top级优化算法-黑翅鸢优化算法 Black-winged Kite Algorithm(附Matlab代码)

340多种基础的群智能优化算法-matlab

【选择自由,免费下载】超340种基础群智能优化算法-Matlab版(截至2024.03.10)icon-default.png?t=N7T8https://mp.weixin.qq.com/s?__biz=MzkxMDQ5MDk4Ng==&mid=2247486247&idx=1&sn=6bbf4a36099f33e84f49234186bbe16c&chksm=c12be722f65c6e343ee235208912a5357af90925d75e3b5e3e676470180ed1b66996b65cda11&token=25423484&lang=zh_CN#rd

175种群智能优化算法python库

超175+种群智能优化算法Python库!!!icon-default.png?t=N7T8http://mp.weixin.qq.com/s?__biz=MzkxMDQ5MDk4Ng==&mid=2247484577&idx=1&sn=ed0b2e27b73e738c094c7534a63a2cda&chksm=c12be8a4f65c61b2f3d90e2b4d1f480f8d0bb038b6598828ebf2434006e07925f8102af9795f&scene=21#wechat_redirect

求解cec测试函数-matlab

最新最火!cec2022测试函数来了(附Matlab代码)icon-default.png?t=N7T8https://mp.weixin.qq.com/s?__biz=MzkxMDQ5MDk4Ng==&mid=2247484693&idx=1&sn=ce311acb26bee2894db6fe90776288bd&chksm=c12be910f65c6006af080b1e97ad5514eee06b64d2caeeac2008b8c06fdc3ba379455e9ca709&scene=21#wechat_redirect

解决12工程设计优化问题-matlab

略微出手,工程设计问题(12)(附Matlab代码)icon-default.png?t=N7T8https://mp.weixin.qq.com/s?__biz=MzkxMDQ5MDk4Ng==&mid=2247485052&idx=1&sn=80e5573c1c005ee5640e44935044ee35&chksm=c12bea79f65c636fc73758b4f4893502bd89cbd1c5d15d7db15e8b5c94eeae40450439d44944&token=681266555&lang=zh_CN#rd

求解11种cec测试函数-python

一网打尽!170+种优化算法求解11种cec测试函数(附Python代码)icon-default.png?t=N7T8https://mp.weixin.qq.com/s?__biz=MzkxMDQ5MDk4Ng==&mid=2247484745&idx=1&sn=1957f7c9b44c47f171c1cd46054d1679&chksm=c12be94cf65c605a5e0f8404e6c90964ce0743b7c25ff5f98a03dedc77e5eec5b48bf0c0e782&token=681266555&lang=zh_CN#rd

解决12种工程设计优化问题-python

大放送!170+种优化算法解决12种工程设计问题(附python代码)icon-default.png?t=N7T8https://mp.weixin.qq.com/s?__biz=MzkxMDQ5MDk4Ng==&mid=2247485068&idx=1&sn=c913be0f2445f8b4d3e944569f5e599f&chksm=c12bea89f65c639f1df0f8e6cacffc1fdffa96683d10743094435ee6b0b55573a5bc8eec7eb3&token=681266555&lang=zh_CN#rd

用于改进所有优化算法:21种混沌映射方法-混沌初始化(附matlab代码)

用于改进所有优化算法:21种混沌映射方法-混沌初始化(附matlab代码)21种混沌映射方法-混沌初始化,适用于所有优化算法icon-default.png?t=N7T8https://mp.weixin.qq.com/s?__biz=MzkxMDQ5MDk4Ng==&mid=2247486215&idx=2&sn=58f1a69175b0d6431a4c7cdfa114b84d&chksm=c12be702f65c6e14e6bd1ddc33b9cec74991d93303c325853049b7e4afd09039b13083fa79c5&token=25423484&lang=zh_CN#rd

沙场大点兵:24种信号分解方法(附matlab代码) 

沙场大点兵:24种信号分解方法(附matlab代码)icon-default.png?t=N7T8https://mp.weixin.qq.com/s?__biz=MzkxMDQ5MDk4Ng==&mid=2247486001&idx=1&sn=a87c24cb401017a78a90bd1b1439fcb0&chksm=c12be634f65c6f22368b7229a59ac5ef330b89d710c826dbfd1a1c34a02b1dd7e909c7f40d79&token=25423484&lang=zh_CN#rd

 沙场大点兵:27种一维数据转换成二维图像的方法-matlab代码沙场大点兵:27种一维数据转换成二维图像的方法-matlab代码icon-default.png?t=N7T8https://mp.weixin.qq.com/s?__biz=MzkxMDQ5MDk4Ng==&mid=2247486260&idx=1&sn=81b1970cb89364c0289ccdfb403e5388&chksm=c12be731f65c6e273a85456326b503b7f35d9f035405050932ff1926e0b1bfa8076b1bc2d1f2&token=25423484&lang=zh_CN#rd

### 优化算法 (Black Kite Optimization Algorithm, BKOA) 的概述 优化算法是一种元启发式优化方法,旨在模拟自然界中的行为模式来解决复杂的最优化问题。该算法通过模仿群体觅食过程中的协作行为来进行全局搜索和局部开发。 #### 算法原理 在2017的研究中提到,BKOA基于三个主要操作:探索、利用以及跟随[^1]。这些操作分别对应于个体发现食物源的过程及其同伴之间的互动方式: - **探索阶段**:随机初始化种群位置并评估适应度函数值; - **利用阶段**:根据当前最优解调整其他成员的位置向量; - **跟随阶段**:让较差的解决方案趋向更好的邻居节点; 此过程中引入了动态权重因子以平衡全局勘探能力和局部精细搜索效率之间关系。 #### 应用实例 一项发表于2017的研究表明,在电力系统无功功率规划方面应用了改进型优化算法(I-BKOA)。实验结果显示I-BKOA能够有效降低网损率,并提高电压稳定性指标。此外还有文献报道将其应用于图像分割领域取得了良好效果。 ```python import numpy as np def black_kite_optimization_algorithm(objective_function, bounds, n_iterations=1000, population_size=50): # 初始化参数 dim = len(bounds) lb = [bound[0] for bound in bounds] ub = [bound[1] for bound in bounds] # 随机生成初始种群 X = np.random.uniform(low=np.array(lb), high=np.array(ub), size=(population_size, dim)) # 计算适应度值 fitness_values = objective_function(X) best_solution_index = np.argmin(fitness_values) global_best_position = X[best_solution_index].copy() global_best_fitness_value = min(fitness_values) for t in range(n_iterations): # 更新粒子速度与位置... pass return global_best_position, global_best_fitness_value ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值